GSM BSS GBSS19.1
IP BSS Engineering Guide Feature Parameter Description Issue
01
Date
2017-03-15
HUAWEI TECHNOLOGIES CO., LTD.
Copyright © Huawei Technologies Co., Ltd. 2017. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.
Trademarks and Permissions and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.
Notice The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.
Huawei Technologies Co., Ltd. Address:
Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China
Website:
http://www.huawei.com
Email:
[email protected]
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
i
GSM BSS IP BSS Engineering Guide Feature Parameter Description
Contents
Contents 1 About This Document.................................................................................................................. 1 1.1 Scope.............................................................................................................................................................................. 1 1.2 Intended Audience.......................................................................................................................................................... 1 1.3 Change History............................................................................................................................................................... 1
2 Engineering Guidelines for Interfaces...................................................................................... 3 2.1 GBFD-118601 Abis over IP........................................................................................................................................... 3 2.1.1 When to Use Abis over IP........................................................................................................................................... 3 2.1.2 Required Information.................................................................................................................................................. 3 2.1.3 Planning....................................................................................................................................................................... 4 2.1.4 Deployment................................................................................................................................................................. 4 2.1.4.1 Deployment Procedure............................................................................................................................................. 5 2.1.4.2 Deployment Requirements....................................................................................................................................... 7 2.1.4.3 Data Preparation....................................................................................................................................................... 8 2.1.4.4 Precautions................................................................................................................................................................8 2.1.4.5 Initial Configuration................................................................................................................................................. 9 2.1.4.6 Activation Observation.............................................................................................................................................9 2.1.4.7 Adjustment..............................................................................................................................................................10 2.1.4.8 Deactivation............................................................................................................................................................10 2.1.5 Performance Monitoring............................................................................................................................................10 2.1.6 Parameter Optimization............................................................................................................................................. 10 2.1.7 Troubleshooting......................................................................................................................................................... 10 2.2 GBFD-118611 Abis IP over E1/T1.............................................................................................................................. 11 2.2.1 When to Use Abis IP over E1/T1.............................................................................................................................. 11 2.2.2 Required Information.................................................................................................................................................11 2.2.3 Planning..................................................................................................................................................................... 11 2.2.4 Deployment............................................................................................................................................................... 12 2.2.4.1 Deployment Procedure........................................................................................................................................... 13 2.2.4.2 Deployment Requirements..................................................................................................................................... 16 2.2.4.3 Data Preparation..................................................................................................................................................... 18 2.2.4.4 Initial Configuration............................................................................................................................................... 18 2.2.4.5 Activation Observation...........................................................................................................................................18 2.2.4.6 Adjustment..............................................................................................................................................................20 2.2.4.7 Deactivation............................................................................................................................................................20 Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
ii
GSM BSS IP BSS Engineering Guide Feature Parameter Description
Contents
2.2.5 Performance Monitoring............................................................................................................................................20 2.2.6 Parameter Optimization............................................................................................................................................. 20 2.2.7 Troubleshooting......................................................................................................................................................... 20 2.3 GBFD-118602 A over IP..............................................................................................................................................21 2.3.1 When to Use A over IP..............................................................................................................................................21 2.3.2 Required Information................................................................................................................................................ 21 2.3.3 Planning..................................................................................................................................................................... 21 2.3.4 Deployment............................................................................................................................................................... 22 2.3.4.1 Deployment Procedure........................................................................................................................................... 23 2.3.4.2 Deployment Requirements..................................................................................................................................... 23 2.3.4.3 Data Preparation..................................................................................................................................................... 25 2.3.4.4 Initial Configuration............................................................................................................................................... 25 2.3.4.5 Activation Observation...........................................................................................................................................26 2.3.4.6 Adjustment..............................................................................................................................................................26 2.3.4.7 Deactivation............................................................................................................................................................26 2.3.5 Performance Monitoring............................................................................................................................................26 2.3.6 Parameter Optimization............................................................................................................................................. 27 2.3.7 Troubleshooting......................................................................................................................................................... 27 2.4 GBFD-118622 A IP over E1/T1...................................................................................................................................27 2.4.1 When to Use A IP over E1/T1...................................................................................................................................27 2.4.2 Required Information................................................................................................................................................ 27 2.4.3 Planning..................................................................................................................................................................... 27 2.4.4 Deployment............................................................................................................................................................... 27 2.4.4.1 Deployment Requirements..................................................................................................................................... 28 2.4.4.2 Data Preparation..................................................................................................................................................... 28 2.4.4.3 Initial Configuration............................................................................................................................................... 29 2.4.4.4 Activation Observation...........................................................................................................................................29 2.4.4.5 Adjustment..............................................................................................................................................................30 2.4.4.6 Deactivation............................................................................................................................................................30 2.4.5 Performance Monitoring............................................................................................................................................30 2.4.6 Parameter Optimization............................................................................................................................................. 30 2.4.7 Troubleshooting......................................................................................................................................................... 30 2.5 GBFD-118603 Gb over IP............................................................................................................................................30 2.5.1 When to Use Gb over IP............................................................................................................................................31 2.5.2 Required Information................................................................................................................................................ 31 2.5.3 Planning..................................................................................................................................................................... 31 2.5.4 Deployment............................................................................................................................................................... 31 2.5.4.1 Deployment Procedure........................................................................................................................................... 32 2.5.4.2 Deployment Requirements..................................................................................................................................... 32 2.5.4.3 Data Preparation..................................................................................................................................................... 33 2.5.4.4 Initial Configuration............................................................................................................................................... 33 2.5.4.5 Activation Observation...........................................................................................................................................34 Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
iii
GSM BSS IP BSS Engineering Guide Feature Parameter Description
Contents
2.5.4.6 Adjustment..............................................................................................................................................................35 2.5.4.7 Deactivation............................................................................................................................................................35 2.5.5 Performance Monitoring............................................................................................................................................35 2.5.6 Parameter Optimization............................................................................................................................................. 35 2.5.7 Troubleshooting......................................................................................................................................................... 35 2.6 IP Transmission over eCoordinator Interfaces............................................................................................................. 35 2.6.1 When to Use IP Transmission................................................................................................................................... 36 2.6.2 Required Information................................................................................................................................................ 36 2.6.3 Planning..................................................................................................................................................................... 36 2.6.3.1 Network Planning................................................................................................................................................... 36 2.6.3.2 Hardware Planning................................................................................................................................................. 36 2.6.4 Deployment............................................................................................................................................................... 36 2.6.4.1 Process.................................................................................................................................................................... 36 2.6.4.2 Requirements.......................................................................................................................................................... 37 2.6.4.3 Data Preparation..................................................................................................................................................... 37 2.6.4.4 Activation............................................................................................................................................................... 37 2.6.4.5 Activation Observation...........................................................................................................................................38 2.6.4.6 Reconfiguration...................................................................................................................................................... 39 2.6.4.7 Deactivation............................................................................................................................................................39 2.6.5 Performance Monitoring............................................................................................................................................39 2.6.6 Parameter Optimization............................................................................................................................................. 39 2.6.7 Troubleshooting......................................................................................................................................................... 39
3 Engineering Guidelines for Transmission Reliability........................................................ 40 3.1 Ethernet Port Backup for the Base Station Controller..................................................................................................40 3.1.1 When to Use Ethernet Port Backup for the Base Station Controller.........................................................................40 3.1.2 Planning..................................................................................................................................................................... 40 3.1.2.1 Network Planning................................................................................................................................................... 40 3.1.2.2 Hardware Planning................................................................................................................................................. 40 3.1.3 Deployment............................................................................................................................................................... 40 3.1.3.1 Requirements.......................................................................................................................................................... 40 3.1.3.2 Activation............................................................................................................................................................... 41 3.1.3.2.1 Using MML Commands...................................................................................................................................... 41 3.1.3.2.2 MML Command Examples................................................................................................................................. 41 3.1.3.2.3 Using the CME.................................................................................................................................................... 41 3.1.3.3 Activation Observation...........................................................................................................................................41 3.1.3.4 Deactivation............................................................................................................................................................41 3.1.3.4.1 Using MML Commands...................................................................................................................................... 42 3.1.3.4.2 MML Command Examples................................................................................................................................. 42 3.1.4 Performance Monitoring............................................................................................................................................42 3.1.5 Troubleshooting......................................................................................................................................................... 42 3.2 Ethernet Route Backup for the Base Station Controller...............................................................................................42 3.2.1 When to Use Ethernet Route Backup for the Base Station Controller...................................................................... 42 Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
iv
GSM BSS IP BSS Engineering Guide Feature Parameter Description
Contents
3.2.2 Planning..................................................................................................................................................................... 42 3.2.2.1 Network Planning................................................................................................................................................... 42 3.2.2.2 Hardware Planning................................................................................................................................................. 42 3.2.3 Deployment............................................................................................................................................................... 42 3.2.3.1 Requirements.......................................................................................................................................................... 43 3.2.3.2 Data Preparation..................................................................................................................................................... 43 3.2.3.3 Activation............................................................................................................................................................... 43 3.2.3.3.1 Using MML Commands...................................................................................................................................... 43 3.2.3.3.2 MML Command Examples................................................................................................................................. 44 3.2.3.4 Activation Observation...........................................................................................................................................44 3.2.3.5 Deactivation............................................................................................................................................................45 3.2.3.5.1 Using MML Commands...................................................................................................................................... 45 3.2.3.5.2 MML Command Examples................................................................................................................................. 45 3.2.3.6 Reconfiguration...................................................................................................................................................... 45 3.2.4 Performance Monitoring............................................................................................................................................45 3.2.5 Troubleshooting......................................................................................................................................................... 45 3.3 Ethernet Route Backup for the Base Station................................................................................................................ 45 3.3.1 When to Use Ethernet Route Backup for the Base Station....................................................................................... 46 3.3.2 Planning..................................................................................................................................................................... 46 3.3.2.1 Network Planning................................................................................................................................................... 46 3.3.2.2 Hardware Planning................................................................................................................................................. 46 3.3.3 Deployment............................................................................................................................................................... 46 3.3.3.1 Requirements.......................................................................................................................................................... 46 3.3.3.2 Data Preparation..................................................................................................................................................... 47 3.3.3.3 Activation............................................................................................................................................................... 47 3.3.3.3.1 Using MML Commands...................................................................................................................................... 47 3.3.3.3.2 MML Command Examples................................................................................................................................. 48 3.3.3.3.3 Using the CME.................................................................................................................................................... 48 3.3.3.4 Activation Observation...........................................................................................................................................49 3.3.3.5 Deactivation............................................................................................................................................................49 3.3.3.5.1 Using MML Commands...................................................................................................................................... 49 3.3.3.5.2 MML Command Examples................................................................................................................................. 50 3.3.3.6 Reconfiguration...................................................................................................................................................... 50 3.3.4 Performance Monitoring............................................................................................................................................50 3.3.5 Troubleshooting......................................................................................................................................................... 50 3.4 Link Aggregation in Scenario 1....................................................................................................................................50 3.4.1 When to Use Link Aggregation in Scenario 1...........................................................................................................50 3.4.2 Planning..................................................................................................................................................................... 50 3.4.2.1 Network Planning................................................................................................................................................... 50 3.4.2.2 Hardware Planning................................................................................................................................................. 50 3.4.3 Deployment............................................................................................................................................................... 51 3.4.3.1 Requirements.......................................................................................................................................................... 51 Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
v
GSM BSS IP BSS Engineering Guide Feature Parameter Description
Contents
3.4.3.2 Data Preparation..................................................................................................................................................... 51 3.4.3.3 Activation............................................................................................................................................................... 51 3.4.3.3.1 Using MML Commands...................................................................................................................................... 51 3.4.3.3.2 MML Command Examples................................................................................................................................. 52 3.4.3.4 Activation Observation...........................................................................................................................................52 3.4.3.5 Deactivation............................................................................................................................................................52 3.4.3.5.1 Using MML Commands...................................................................................................................................... 52 3.4.3.5.2 MML Command Examples................................................................................................................................. 53 3.4.3.6 Reconfiguration...................................................................................................................................................... 53 3.4.4 Performance Monitoring............................................................................................................................................53 3.4.5 Troubleshooting......................................................................................................................................................... 53 3.5 Link Aggregation in Scenario 2....................................................................................................................................53 3.5.1 When to Use Link Aggregation in Scenario 2...........................................................................................................53 3.5.2 Planning..................................................................................................................................................................... 53 3.5.2.1 Network Planning................................................................................................................................................... 53 3.5.2.2 Hardware Planning................................................................................................................................................. 53 3.5.3 Deployment............................................................................................................................................................... 54 3.5.3.1 Requirements.......................................................................................................................................................... 54 3.5.3.2 Data Preparation..................................................................................................................................................... 54 3.5.3.3 Activation............................................................................................................................................................... 54 3.5.3.3.1 Using MML Commands...................................................................................................................................... 54 3.5.3.3.2 MML Command Examples................................................................................................................................. 55 3.5.3.4 Activation Observation...........................................................................................................................................55 3.5.3.5 Deactivation............................................................................................................................................................55 3.5.3.5.1 Using MML Commands...................................................................................................................................... 55 3.5.3.5.2 MML Command Examples................................................................................................................................. 55 3.5.3.6 Reconfiguration...................................................................................................................................................... 56 3.5.4 Performance Monitoring............................................................................................................................................56 3.5.5 Troubleshooting......................................................................................................................................................... 56 3.6 Link Aggregation in Scenario 3....................................................................................................................................56 3.6.1 When to Use Link Aggregation in Scenario 3...........................................................................................................56 3.6.2 Planning..................................................................................................................................................................... 56 3.6.2.1 Network Planning................................................................................................................................................... 56 3.6.2.2 Hardware Planning................................................................................................................................................. 56 3.6.3 Deployment............................................................................................................................................................... 56 3.6.3.1 Requirements.......................................................................................................................................................... 56 3.6.3.2 Data Preparation..................................................................................................................................................... 57 3.6.3.3 Activation............................................................................................................................................................... 57 3.6.3.3.1 Using MML Commands...................................................................................................................................... 57 3.6.3.3.2 MML Command Examples................................................................................................................................. 58 3.6.3.3.3 Using the CME.................................................................................................................................................... 58 3.6.3.4 Activation Observation...........................................................................................................................................58 Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
vi
GSM BSS IP BSS Engineering Guide Feature Parameter Description
Contents
3.6.3.5 Deactivation............................................................................................................................................................58 3.6.3.5.1 Using MML Commands...................................................................................................................................... 58 3.6.3.5.2 MML Command Examples................................................................................................................................. 58 3.6.3.6 Reconfiguration...................................................................................................................................................... 59 3.6.4 Performance Monitoring............................................................................................................................................59 3.6.5 Troubleshooting......................................................................................................................................................... 59 3.7 OM Channel Backup.................................................................................................................................................... 59 3.7.1 When to Use OM Channel Backup........................................................................................................................... 59 3.7.2 Planning..................................................................................................................................................................... 59 3.7.2.1 Network Planning................................................................................................................................................... 59 3.7.2.2 Hardware Planning................................................................................................................................................. 59 3.7.3 Deployment............................................................................................................................................................... 60 3.7.3.1 Requirements.......................................................................................................................................................... 60 3.7.3.2 Data Preparation..................................................................................................................................................... 60 3.7.3.3 Activation............................................................................................................................................................... 65 3.7.3.3.1 Using MML Commands...................................................................................................................................... 65 3.7.3.3.2 MML Command Examples................................................................................................................................. 65 3.7.3.3.3 Using the CME.................................................................................................................................................... 66 3.7.3.4 Activation Observation...........................................................................................................................................66 3.7.3.5 Deactivation............................................................................................................................................................67 3.7.3.5.1 Using MML Commands...................................................................................................................................... 67 3.7.3.5.2 MML Command Examples................................................................................................................................. 67 3.7.3.6 Reconfiguration...................................................................................................................................................... 67 3.7.4 Performance Monitoring............................................................................................................................................67 3.7.5 Troubleshooting......................................................................................................................................................... 68
4 Engineering Guidelines for Transmission Maintenance and Detection..........................69 4.1 BFD.............................................................................................................................................................................. 69 4.1.1 When to Use BFD......................................................................................................................................................69 4.1.2 Planning..................................................................................................................................................................... 69 4.1.2.1 Network Planning................................................................................................................................................... 69 4.1.2.2 Hardware Planning................................................................................................................................................. 69 4.1.3 Deployment............................................................................................................................................................... 69 4.1.3.1 Requirements.......................................................................................................................................................... 70 4.1.3.2 Data Preparation..................................................................................................................................................... 70 4.1.3.3 Precautions..............................................................................................................................................................78 4.1.3.4 Activation............................................................................................................................................................... 78 4.1.3.4.1 Using MML Commands...................................................................................................................................... 78 4.1.3.4.2 MML Command Examples................................................................................................................................. 79 4.1.3.5 Activation Observation...........................................................................................................................................79 4.1.3.6 Deactivation............................................................................................................................................................80 4.1.3.6.1 Using MML Commands...................................................................................................................................... 80 4.1.3.6.2 MML Command Examples................................................................................................................................. 80 Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
vii
GSM BSS IP BSS Engineering Guide Feature Parameter Description
Contents
4.1.4 Performance Monitoring............................................................................................................................................80 4.1.5 Parameter Optimization............................................................................................................................................. 81 4.1.6 Troubleshooting......................................................................................................................................................... 81
5 Parameters..................................................................................................................................... 83 6 Counters...................................................................................................................................... 108 7 Glossary....................................................................................................................................... 109 8 Reference Documents............................................................................................................... 110
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
viii
GSM BSS IP BSS Engineering Guide Feature Parameter Description
1
1 About This Document
About This Document
1.1 Scope This document describes the engineering guidelines for interfaces, transmission reliability, and maintenance and detection in IP transmission mode. This document covers the following features: l
GBFD-118602 A over IP
l
GBFD-118622 A IP over E1/T1
l
GBFD-118601 Abis over IP
l
GBFD-118611 Abis IP over E1/T1
l
GBFD-118603 Gb over IP
For details about the working principles of the IP Transmission feature, see SingleRAN IP Transmission Feature Parameter Description.
1.2 Intended Audience This document is intended for personnel who: l
Need to understand the features described herein
l
Work with Huawei products
1.3 Change History This section provides information about the changes in different document versions. There are two types of changes, which are defined as follows: l
Feature change Changes in features of a specific product version
l
Editorial change Changes in wording or addition of information that was not described in the earlier version
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
GSM BSS IP BSS Engineering Guide Feature Parameter Description
1 About This Document
01(2017-03-15) This issue does not include any changes.
Draft A(2016-12-30) Compared with Issue 01 (2016-02-29) of GBSS18.1, Draft A (2016-12-30) of GBSS19.1 includes the following changes. Change Type
Change Description
Parameter Change
Feature change
l Added descriptions about the BSC6910 support EXOUb board.
None
l Added the description that the BSC6900 and BSC6910 supports FG2e board. Editorial change
Issue 01 (2017-03-15)
None
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
None
2
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2
2 Engineering Guidelines for Interfaces
Engineering Guidelines for Interfaces
2.1 GBFD-118601 Abis over IP 2.1.1 When to Use Abis over IP Use this feature to meet the growing demands for data services if the IP technology is supported.
2.1.2 Required Information Before deploying this feature, collect the following information: l
Operators' network plan
l
Signaling-plane and user-plane IP addresses on the BSC side
l
Signaling-plane, user-plane, and management-plane IP addresses on the BTS side
l
Differentiated services code point (DSCP) and Virtual local access network (VLAN) values on the BSC side
l
DSCP and VLAN values on the BTS side
l
Bottleneck bandwidth of the Abis path
l
Bearer network supporting DHCP relay in L3 networking mode
l
BTS clock acquisition: Use IEEE 1588v2-based clock synchronization.
l
IP address of the clock server
l
IP address of the BSC gateway
l
IP address of the BTS gateway
l
Each site's bandwidth in the transport network plan
In addition to the preceding information, collect the following information when the BSC uses a transmission resource pool: l
Index of the transmission resource pool
l
IP address bound to the pool (only one IP address)
l
Next-hop IP address corresponding to the source IP address
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
3
GSM BSS IP BSS Engineering Guide Feature Parameter Description
l
2 Engineering Guidelines for Interfaces
Adjacent node ID and transmission resource pool index of the BTS
2.1.3 Planning RF Planning N/A
Network Planning This feature supports L2, L3, and L2+L3 networking modes. To facilitate capacity expansion, L3 networking mode is recommended for the Abis interface. l
In transmission pool mode, it is recommended that the IP addresses of the transmission resource pool use ETH port IP addresses or trunk group IP addresses in L2 networking mode and use device IP addresses in L3 networking mode. Only one IP address can be configured for a transmission resource pool.
l
In Abis over IP mode: –
The BSC6900 uses the IP path configuration mode.
–
The BSC6910 can only use the transmission resource pool configuration mode and only one IP address can be configured for a pool. The configuration is equivalent to that of the IP path but does not support load balancing.
It is recommended that the BSC6900 use active/standby ports or port trunks. The BSC6910 does not support active/standby ports but supports active/standby trunk groups.
Hardware Planning The BSC must be configured with the boards listed in the following table. NE
Required Board
BSC6900
FG2a, FG2c, FG2e, GOUa, GOUc, GOUd, or GOUe
BSC6910
FG2c, FG2e, GOUc, GOUd, GOUe, or EXOUa/EXOUb
2.1.4 Deployment
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
4
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.1.4.1 Deployment Procedure Figure 2-1 Flowchart for deploying Abis over IP on the BSC side (for GBTS)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
5
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Figure 2-2 Flowchart for deploying Abis over IP on the BSC side (for eGBTS)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
6
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Figure 2-3 Flowchart for deploying Abis over IP on the eGBTS side
2.1.4.2 Deployment Requirements Table 2-1 Deployment requirements
Issue 01 (2017-03-15)
Aspects
Requirement
Related Features
See Related Features in IP Transmission Feature Parameter Description.
BSC
See 2.1.3 Planning.
BTS
None
GSM networking
The Abis interface uses IP transmission.
MS
None
MSC
None
License
The license controlling this feature has been activated. For details about the license control item, see License Control Item Description. For details about how to activate the license, see License Management Feature Parameter Description.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
7
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Aspects
Requirement
Others
The BSC data and device data are configured. For details, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. In L3 networking mode, the static route from the peer end to the BSC is configured. In L2 networking mode, the static route from the peer end to the BSC is configured when the BSC uses device IP address. No route is required when the BSC uses other transmission modes. For each eGBTS, it is recommended that 12 TRXs are configured with one SCTP link. When the number of TRXs on an eGBTS is less than or equal to 12, only one SCTP link is required. When the number of RXs on an eGBTS is greater than 12 but less than or equal to 24, two SCTP links are required. A maximum of 18 TRXs can share one SCTP link. Additional SCTP links occupy additional system resources, thereby increasing system load.
Table 2-2 Bearer network QoS requirements Interface
Abis
One-Way Delay (ms)
Delay Variation (ms)
Packet Loss Rate (unit: %)
Maximum Value
Target Value
Maximum Value
Target Value
Maximum Value
Target Value
40
15
15
8
0.1
0.05
NOTE
l "Maximum Value" indicates that the basic commercial requirements of deploying radio services can be met. l "Target Value" indicates that the transport network must reach the target value when the customer has high requirements for network key performance indicators (KPIs) on the wireless network. l The quality of service (QoS) requirements listed in Table 2-2 do not apply to satellite transmission.
2.1.4.3 Data Preparation See 3900 Series Base Station Initial Configuration Guide.
2.1.4.4 Precautions When the A interface uses IP transmission and the delay variation over the Abis interface is longer than 80 ms, it is recommended that the PTRAUTSNSNEXT parameter be set to ON. This reduces the negative impact of delay variations on the MGW's voice-processing performance. After you set this parameter to ON, the PTRAU SN and TSN extension function is enabled on the CS user plane, and the time stamps and frame numbers corresponding to longer circulating periods are supported. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
8
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.1.4.5 Initial Configuration Using MML Commands Step 1 On the BSC LMT, run the ADD BRD command to add an IP interface board. Step 2 Configure the BTS data. For details about how to configure GBTS data, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. NOTE
In Abis over IP mode: l The BSC6900 can only use the IP path configuration mode. l The BSC6910 can only use the transmission resource pool configuration mode and only one IP address can be configured for a pool. The configuration is equivalent to that of the IP path but does not support load balancing.
For details about how to configure eGBTS data, see 3900 Series Base Station Initial Configuration Guide. Step 3 (Optional) Run the STR IPCHK command with Check type, Check mode, Peer IP address, and Multi hop BFD detect local ip set to appropriate values based on the actual networking. NOTE
When the Abis interface uses the L2 networking mode, the BSC and BTS automatically enable the BFD function. In this case, the BTS is not allowed to use the device IP address in communication.
Step 4 (Optional) When the BFD is enabled on an eGBTS, run the ADD BFDSESSION command with Source IP, Destination IP, Hop Type, DSCP, and Protocol Version set to appropriate values. ----End
MML Command Examples For details about MML command examples for GBTS initial configuration, see section "Typical Configuration Scripts" in BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. For details about MML command examples for eGBTS initial configuration, see 3900 Series Base Station Initial Configuration Guide.
Using the CME For details about how to configure GBTS data, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. For details about how to configure eGBTS data, see 3900 Series Base Station Initial Configuration Guide.
2.1.4.6 Activation Observation Step 1 Verify data at the physical layer and data link layer. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
9
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
On the BSC LMT, run the DSP ETHPORT command with Subrack No., Slot No., and Port No. set to those of the peer interface board connected to the BTS. Query the values of Port state and Link Availability Status in the command output. Expected result: The value of Port state is Activated and Link Availability Status is Available. Step 2 Verify the control plane data on the Abis interface. l
GBTS: On the BSC LMT, run the DSP LAPDLNK command to check whether the LAPD link is normal. Expected result: The value of UsageStatus is Normal.
l
eGBTS: On the BTS LMT run the DSP SCTPLNK command to check whether the SCTP link is normal. Expected result: The value of SCTP Link Status is UP.
Step 3 Verify the user plane data on the Abis interface. l
BSC6900: On the BSC LMT, run the DSP IPPATH command to check whether the IP path is available. Expected result: The value of Operation state is Available, and the available bandwidth is greater than 0.
l
BSC6910: On the BSC LMT, run the DSP ADJNODE command to query the value of Operation state of an adjacent node. Expected result: The value of Operation state is Available, and the related bandwidth is greater than 0.
Step 4 (Optional)Verify the BFD. On the BSC LMT, run the DSP IPCHK command to query the value of Check state. Expected result: The value of Check state is UP or DOWN. ----End
2.1.4.7 Adjustment For details about how to perform configuration adjustment, see GBSS Reconfiguration Guide for BSC6900 (MML-Based) or GBSS Reconfiguration Guide for BSC6910 (MML-Based).
2.1.4.8 Deactivation This feature does not need to be deactivated.
2.1.5 Performance Monitoring None
2.1.6 Parameter Optimization None
2.1.7 Troubleshooting For details about how to troubleshoot faults related to this feature, see GBSS Troubleshooting Guide. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
10
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.2 GBFD-118611 Abis IP over E1/T1 2.2.1 When to Use Abis IP over E1/T1 Use this feature with the Abis MUX and Abis IPHC features to improve transmission efficiency if the IP technology is not supported and transmission resources are limited.
2.2.2 Required Information Before deploying this feature, collect the following information: l
Operators' network plan
l
Signaling-plane and user-plane IP addresses on the BSC side
l
Signaling-plane and user-plane IP addresses on the BTS side
l
DSCP and VLAN values on the BSC side when the BSC uses IP over ETH transmission
l
DSCP values on the BTS side
l
Bottleneck bandwidth of the Abis path
l
Number of timeslots and bandwidth for PPP links or MP links on the BSC when the BSC uses IP over E1/T1 transmission
l
Number of timeslots and bandwidth for PPP links or MP links on the BTS
l
Bearer network supporting DHCP relay in L3 networking mode (DHCP server IP address is the maintenance IP address of the U2000)
l
In a BTS chain network, you must configure the DHCP relay for the upper-level BTS and set the maintenance IP address of the U2000 as the DHCP server IP address.
l
BTS clock synchronization mode (You must use line clock synchronization.)
In addition to the preceding information, collect the following information when the BSC6910 works in transmission resource pool networking mode: l
Index of the transmission resource pool
l
IP address bound to the transmission resource pool
l
Adjacent node identifier, transmission resource pool index, and the MP link groups and PPP links configured on the BSC side corresponding to the BTS
2.2.3 Planning RF Planning N/A
Network Planning Typically, this feature adopts L2 networking mode on the synchronous digital hierarchy (SDH) network. To facilitate network reconstruction and maintenance, the BTS adopts IP over E1/T1 transmission mode, the BSC adopts IP over FE/GE transmission mode, and the bearer Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
11
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
network equipment implements a conversion between IP over E1/T1 mode and IP over FE mode. If the original bearer network is an SDH network, more time is required for FE/GE transport network deployment. Therefore, this feature is commonly used during network reconstruction. When the BSC6900 works in Abis over IP mode, the IP path configuration is used. When the BSC6910 works in Abis over IP mode, the transmission resource pool technique is used. Only one IP address can be configured for a transmission resource pool. The configuration is equivalent to that of the IP path but does not support load balancing.
Hardware Planning l
When both the BSC and BTS use IP over E1/T1 transmission: The BSC must be configured with the boards listed in the following table. NE
Required Board
BSC6900
PEUa, PEUc, or POUc
BSC6910
POUc
The BSC6900 is configured with a PEUa or PEUc board in P2P non-cascading networking mode or is configured with a POUc board in BTS cascading networking mode. l
When the BTS uses IP over E1/T1 transmission, the BSC uses IP over ETH transmission, and the BSC and BTS are connected using a router: The BSC must be configured with the boards listed in the following table. NE
Required Board
BSC6900
FG2a, FG2c , FG2e, GOUa, GOUc, GOUd, or GOUe
BSC6910
FG2c, FG2e, GOUc, GOUd, GOUe, or EXOUa/EXOUb
2.2.4 Deployment
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
12
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.2.4.1 Deployment Procedure Figure 2-4 Flowchart for deploying Abis IP over E1/T1 on the BSC side (for GBTS in E2E IP over E1/T1 transmission mode)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
13
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Figure 2-5 Flowchart for deploying Abis IP over E1/T1 on the BSC side (for GBTS in nonE2E IP over E1/T1 transmission mode)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
14
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Figure 2-6 Flowchart for deploying Abis IP over E1/T1 on the BSC side (for eGBTS)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
15
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Figure 2-7 Flowchart for deploying Abis IP over E1/T1 on the eGBTS side (in E2E or nonE2E IP over E1/T1 transmission mode)
For details about the procedure for deploying this feature on the BSC side for the eGBTS in non-E2E IP over E1/T1 transmission mode, see Figure 2-2.
2.2.4.2 Deployment Requirements Table 2-3 Deployment requirements
Issue 01 (2017-03-15)
Aspect
Requirement
Related features
See Related Features in IP Transmission Feature Parameter Description.
BSC
See 2.2.3 Planning.
BTS
None
GSM networking
The Abis interface uses IP over E1/T1 transmission.
MS
None
MSC
None
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
16
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Aspect
Requirement
License
The license controlling this feature has been activated. For details about the license control item, see License Control Item Description. For details about how to activate the license, see License Management Feature Parameter Description.
Others
The BSC data and device data are configured. For details, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. In L3 networking mode, the static route from the peer end to the BSC is configured. In L2 networking mode, the static route from the peer end to the BSC is configured when the BSC uses device IP address. No route is required when the BSC uses other transmission modes. When the Abis interface uses IP over E1/T1 transmission and an MLPPP group is configured, the time difference among different E1 links in the MLPPP group cannot exceed 10 ms and the numbers of timeslots for different E1 links in the MLPPP group must be the same. If a PPP link is configured, the minimum number of timeslots for each E1 link must be greater than or equal to 5. When the Abis interface uses IP over E1/T1 transmission, the BSC supports timeslot transparent transmission. For each eGBTS, it is recommended that 12 TRXs are configured with one SCTP link. When the number of TRXs on an eGBTS is less than or equal to 12, only one SCTP link is required. When the number of RXs on an eGBTS is greater than 12 but less than or equal to 24, two SCTP links are required. A maximum of 18 TRXs can share one SCTP link. Additional SCTP links occupy additional system resources, thereby increasing system load.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
17
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Table 2-4 Bearer network QoS requirements Interface
One-Way Delay (ms)
BER
Abis
5
1.E–6
NOTE
The QoS requirements listed in Table 2-4 do not apply to satellite transmission.
2.2.4.3 Data Preparation See 3900 Series Base Station Initial Configuration Guide.
2.2.4.4 Initial Configuration Using MML Commands Step 1 On the BSC LMT, run the ADD BRD command to add an IP over E1/T1 board. Step 2 Configure the BTS data. For details about how to configure GBTS data, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. For details about how to configure eGBTS data, see 3900 Series Base Station Initial Configuration Guide. ----End
MML Command Examples For details about MML command examples for GBTS initial configuration, see section "Typical Configuration Scripts" in BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. For details about MML command examples for eGBTS initial configuration, see 3900 Series Base Station Initial Configuration Guide.
Using the CME For details about how to configure GBTS data, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. For details about how to configure eGBTS data, see 3900 Series Base Station Initial Configuration Guide.
2.2.4.5 Activation Observation IP over E1/T1 on the BSC and BTS Sides Step 1 Verify data at the physical layer and data link layer. 1.
On the BSC LMT, run the DSP E1T1 command to query the value of Port running state.
2.
If the PPP link is used, run the DSP PPPLNK commandto query the values of Link state, Local IP address, and Peer IP address. If the value of Link state is UP and the
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
18
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
values of Local IP Address and Peer IP Address are consistent with data configurations, go to the next step. Otherwise, the transmission link is faulty. Locate and rectify the fault. 3.
If the MPLNK link is used, run the DSP MPGRP command to query the values of Link state, Local IP address, and Peer IP address. Run the DSP MPLNK command to query the values of Link state and LCP negotiated state. Go to the next step if: In the DSP MPGRP command output, the value of Link state is Normal, and the values of Local IP address and Peer IP address are consistent with data configurations. In the DSP MPLNK command output, the value of Link state is UP, and the value of LCP Negotiation State is Connect available. Otherwise, the transmission link is faulty. Locate and rectify the fault.
4.
If the PPP link is used, run the PING IP command with its parameters set as follows: Set Source IP address to Local IP address specified in the DSP PPPLNK command. Set Destination IP address to Peer IP address specified in the DSP PPPLNK command. If the statistics of ping packets can be received, the PPP link is normal.
5.
If the MPLNK link is used, run the PING IP command with its parameters set as follows: Set Source IP address to Local IP address specified in the DSP MPGRP command. Set Destination IP address to Peer IP address specified in the DSP MPGRP command. If the statistics of ping packets can be received, the MP link is normal.
Step 2 Verify the control plane data on the Abis interface. l
GBTS: On the BSC LMT, run the DSP LAPDLNK command to check whether the LAPD link is normal. Expected result: The value of UsageStatus is Normal.
l
eGBTS: On the BTS LMT run the DSP SCTPLNK command to check whether the SCTP link is normal. Expected result: The value of SCTP Link Status is UP.
Step 3 Verify the user plane data on the Abis interface. On the BSC LMT: l
When the BSC works in non-transmission resource pool networking mode, run the DSP IPPATH command to query the value of Operation state. Expected result: The value of Operation state is Available, and the available bandwidth is greater than 0.
l
When the BSC works in transmission resource pool networking mode, run the DSP ADJNODE command to query the status of an adjacent node, the value of Operation state, and bandwidth conditions. Expected result: The value of Operation state is Available and the related bandwidth is greater than 0, indicating that the adjacent node works correctly.
----End
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
19
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
IP over E1/T1 on the BTS Side and IP over ETH on the BSC Side (BSC and BTS Interconnected Using a Router) Step 1 Verify data at the physical layer and data link layer. On the BSC LMT, run the DSP ETHPORT command with Subrack No., Slot No., and Port No. set to those of the peer interface board connected to the BTS. Query the values of Port state and Link Availability Status in the command output. Expected result: The value of Port state is Activated and Link Availability Status is Available. Step 2 Verify the control plane data on the Abis interface. l
GBTS: On the BSC LMT, run the DSP LAPDLNK command to check whether the LAPD link is normal. Expected result: The value of UsageStatus is Normal.
l
eGBTS: On the BTS LMT run the DSP SCTPLNK command to check whether the SCTP link is normal. Expected result: The value of SCTP Link Status is UP.
Step 3 Verify the user plane data on the Abis interface. l
When the BSC works in non-transmission resource pool networking mode, run the DSP IPPATH command to check the IP path status. Expected result: The value of Operation state is Available, and the available bandwidth is greater than 0.
l
When the BSC works in transmission resource pool networking mode, run the DSP ADJNODE command to query the value of Operation state of an adjacent node. Expected result: The value of Operation state is Available, and the related bandwidth is greater than 0.
----End
2.2.4.6 Adjustment For details about how to perform configuration adjustment, see GBSS Reconfiguration Guide for BSC6900 (MML-Based) or GBSS Reconfiguration Guide for BSC6910 (MML-Based).
2.2.4.7 Deactivation This feature does not need to be deactivated.
2.2.5 Performance Monitoring None
2.2.6 Parameter Optimization None
2.2.7 Troubleshooting For details about how to troubleshoot faults related to this feature, see GBSS Troubleshooting Guide. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
20
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.3 GBFD-118602 A over IP 2.3.1 When to Use A over IP In IP mode, use this feature with the TrFO feature to improve voice quality; alternatively, use this feature with the MSC Pool feature to improve network reliability. Only the BSC6900 supports the A over IP feature. Use this feature in non-transmission pool networking mode. Use the GBFD-118631 A Interface Transmission Pool feature in transmission pool networking mode. For the BSC6910, the GBFD-150201 A over IP Based on Dynamic Load Balancing feature is introduced in GBSS15.0. This feature corresponds to the A over IP and A Interface Transmission Pool features for the BSC6900. For details, see Transmission Resource Pool in BSC Feature Parameter Description. It is recommended that all cells use the same speech version. This helps increase the TrFO setup success rate and achieves the best voice quality. If the AMR speech version is used, the following default rate sets are recommended: l
FAMR {12.2 kbit/s, 7.40 kbit/s, 5.90 kbit/s, 4.75 kbit/s}
l
HAMR {7.40 kbit/s, 5.90 kbit/s, 4.75 kbit/s}
In A over IP mode, the BTS30 and BTS312 do not support AMR. If a GSM MS sets up a call with a UMTS UE when AMR and TrFO are used, the CN and UMTS network must support AMR multirate adjustment. If the UMTS network and CN do not support AMR multirate adjustment, voice quality deteriorates because they do not respond to the rate adjustment initiated by the GSM network.
2.3.2 Required Information Before deploying this feature, collect the following information: l
Operators' network plan
l
VLAN isolation information
l
DSCP and VLAN values configured for the user plane and signaling plane
l
Signaling-plane and user-plane IP addresses on the BSC side
l
IP addresses of the signaling plane and user plane on the CN side
l
Originating signaling points (OSPs) and destination signaling points (DSPs) of the signaling plane, and M3UA information on the BSC side
l
OSPs and DSPs of the signaling plane, and M3UA information on the CN side
2.3.3 Planning RF Planning N/A Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
21
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Network Planning This feature supports L2 and L3 networking modes. To facilitate capacity expansion, use L3 networking mode for the A interface. To improve signaling reliability, use SCTP multi-homing with IP addresses configured on different interface boards. For details about SCTP multi-homing, see IP Transmission Feature Parameter Description.
Hardware Planning The BSC (BSC6900) must be configured with the FG2a, FG2c, FG2e, GOUa, GOUc, GOUd, or GOUe board.
2.3.4 Deployment
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
22
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.3.4.1 Deployment Procedure Figure 2-8 Flowchart for deploying A over IP
2.3.4.2 Deployment Requirements Table 2-5 Deployment requirements
Issue 01 (2017-03-15)
Aspect
Requirement
Related features
See Related Features in IP Transmission Feature Parameter Description.
BSC
See 2.3.3 Planning.
BTS
None Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
23
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Aspect
Requirement
GSM networking
The A interface uses IP transmission.
MS
None
MSC
The MSC supports the A over IP transmission.
License
The license controlling this feature has been activated. For details about the license control item, see License Control Item Description. For details about how to activate the license, see License Management Feature Parameter Description.
Others
The BSC data and device data are configured. For details, see BSC6900 GSM Initial Configuration Guide. In L3 networking mode, the static route from the peer end to the BSC is configured. In L2 networking mode, the static route from the peer end to the BSC is configured when the BSC uses device IP address. No route is required when the BSC uses other transmission modes. The device that connects to the BSC must support the BFD function when the BFDbased IP fault detection function is used. The A over IP transmission mode supports only IPv4. In GBSS14.0 and later versions, if the Abis interface of some BTSs on the network uses TDM transmission, verify that TNU boards in different subracks are connected.
Table 2-6 Bearer network QoS requirements Interface
A
Issue 01 (2017-03-15)
One-Way Delay (ms)
Delay Variation (ms)
Packet Loss Rate (%)
Maximum Value
Target Value
Maximum Value
Target Value
Maximum Value
Target Value
20
15
8
8
0.1%
0.05%
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
24
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
NOTE
l "Maximum Value" indicates that the basic commercial requirements of deploying radio services can be met. l "Target Value" indicates that the transport network must reach the target value when the customer has high requirements for network KPIs on the wireless network side. l The QoS requirements listed in Table 2-6 do not apply to satellite transmission.
2.3.4.3 Data Preparation See BSC6900 GSM Initial Configuration Guide.
2.3.4.4 Initial Configuration Using MML Commands On the BSC LMT, perform the following steps: Step 1 Run the SET BSCBASIC command with A Interface Tag, Um Interface Tag, and Abis Interface Tag set to GSM_PHASE_2Plus. Step 2 Configure the A interface data. For details, see BSC6900 GSM Initial Configuration Guide. Step 3 (Optional)Run the STR IPCHK command with Check type, Check mode, Peer IP address, and Multi hop BFD detect local ip set to appropriate values based on the actual networking. NOTE
BFD has different functions in different scenarios: l If the BSC is connected to a peer device (such as a BTS, MGW, or SGSN) through a router, the BFD is used to check whether the router is available. l If the BSC is directly connected to a peer device (such as a BTS, MGW, or SGSN), the BFD is used to check whether the peer device is available. With BFD, IP rerouting is triggered when the gateway or the peer device is faulty, reducing the probability of packet loss or call drop. BFD requires support from both the local and peer devices. It takes effect only when enabled for both the local and peer devices. Otherwise, services will fail. If the Ethernet ports work in active/standby mode, set Check mode to CHECK_ON_PRIMARY_PORT(Check on Active Port) ; if the Ethernet port works in independent mode, set Check mode to CHECK_ON_INDEPENDENT_PORT(Check on Independent Port). If Check type is set to SBFD, single-hop BFD is enabled. In this case, set Peer IP address to an IP address that is on the same network segment as the local IP address. If Check type is set to MBFD, multi-hop BFD is enabled. In this case, set Multi hop BFD detect local ip to the device IP or port IP of the local board, and set Peer IP address to an IP address on a different network segment from the local IP address.
----End
MML Command Examples For details about MML command examples for initial configuration, see section "Typical Configuration Scripts" in BSC6900 GSM Initial Configuration Guide.
Using the CME See BSC6900 GSM Initial Configuration Guide. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
25
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.3.4.5 Activation Observation Step 1 Verify data at the physical layer and data link layer. 1.
Run the DSP ETHPORT command to query the values of Port state and Link Availability Status. Expected result: The value of Port state is Activated and Link Availability Status is Available.
2.
(Optional) Run the DSP ETHTRK command to query the value of Status of ETHTRK. Expected result: The value of Status of ETHTRK is UP.
3.
(Optional) Run the DSP ETHTRKLNK command to query the value of Status of ETHTRKLNK sub-port. Expected result: The value of Status of ETHTRKLNK sub-port is UP.
Step 2 Verify the control plane data on the A interface. 1.
Run the DSP N7DPC command to query the value of SCCP DSP state. Expected result: The value of SCCP DSP state is Accessible.
2.
Run the DSP M3LKS command to query the values of Operation state and Activated state. Expected result: The value of Operation state is Available, and the value of Activated state is Activated.
3.
Run the DSP SCTPLNK command to query the value of Operation state. Expected result: The value of Operation state is Normal.
Step 3 Verify the user plane data on the A interface. 1.
Run the DSP IPPATH command to query the value of Operation state. Expected result: The value of Operation state is Available, and the available bandwidth is greater than 0.
2.
Run the PING IP command to check whether an IP path is normal. Expected result: The operation succeeds.
Step 4 (Optional)Verify the BFD. Run the DSP IPCHK command to query the value of Check state. Expected result: The value of Check state is UP or DOWN. ----End
2.3.4.6 Adjustment For details about how to perform configuration adjustment, see GBSS Reconfiguration Guide for BSC6900 (MML-Based).
2.3.4.7 Deactivation This feature does not need to be deactivated.
2.3.5 Performance Monitoring None Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
26
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.3.6 Parameter Optimization None
2.3.7 Troubleshooting For details about how to troubleshoot faults related to this feature, see GBSS Troubleshooting Guide.
2.4 GBFD-118622 A IP over E1/T1 2.4.1 When to Use A IP over E1/T1 If the TrFO feature is supported, use this feature with the TrFO feature to improve voice quality in non-IP transmission mode.
2.4.2 Required Information Before deploying this feature, collect the following information: l
Operators' network plan
l
DSCP and VLAN values configured for the user plane and signaling plane
l
Signaling-plane and user-plane IP addresses on the BSC side
l
IP addresses of the signaling plane and user plane on the CN side
l
OSPs and DSPs of the signaling plane, and M3UA information on the BSC side
l
OSPs and DSPs of the signaling plane, and M3UA information on the CN side
l
Number of timeslots and bandwidth for PPP links or MP links
2.4.3 Planning RF Planning N/A
Network Planning Typically, this feature adopts L2 networking mode on the SDH network. This feature is not recommended for the A interface because it does not conserve bandwidth resources.
Hardware Planning The BSC must be configured with the PEUa, PEUc, or POUc board.
2.4.4 Deployment Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
27
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.4.4.1 Deployment Requirements Table 2-7 Deployment requirements Aspect
Requirement
Related features
See Related Features in IP Transmission Feature Parameter Description.
BSC
See 2.4.3 Planning.
BTS
None
GSM networking
The A interface uses IP over E1/T1 transmission.
MS
None
MSC
None
License
The license controlling this feature has been activated. For details about the license control item, see License Control Item Description. For details about how to activate the license, see License Management Feature Parameter Description.
Others
The BSC data and device data are configured. For details, see BSC6900 GSM Initial Configuration Guide. In L3 networking mode, the static route from the peer end to the BSC is configured. In L2 networking mode, the static route from the peer end to the BSC is configured when the BSC uses device IP address. No route is required when the BSC uses other transmission modes. In GBSS14.0 and later versions, if the Abis interface of some BTSs on the network uses TDM transmission, verify that TNU boards in different subracks are connected.
2.4.4.2 Data Preparation See BSC6900 GSM Initial Configuration Guide.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
28
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.4.4.3 Initial Configuration Using MML Commands Step 1 Run the SET BSCBASIC command with A Interface Tag, Um Interface Tag, and Abis Interface Tag set to GSM_PHASE_2Plus. Step 2 Configure the A interface data. For details, see BSC6900 GSM Initial Configuration Guide. ----End
MML Command Examples For details about MML command examples for initial configuration, see section "Typical Configuration Scripts" in BSC6900 GSM Initial Configuration Guide.
Using the CME See BSC6900 GSM Initial Configuration Guide.
2.4.4.4 Activation Observation Step 1 Verify data at the physical layer and data link layer. 1.
On the BSC LMT, run the DSP E1T1 command to query the value of Port running state. Expected result: The command output shows that the port running state is normal.
2.
Check the state of the link. –
For a PPP link:
a.
Run the DSP PPPLNK command to query the values of Link state, Local IP address, and Peer IP address. If the command output shows that the link state is normal and the values of Local IP address and Peer IP address are consistent with data configurations, proceed to the following steps. Otherwise, the transmission link is faulty. Locate and rectify the fault.
b.
Run the PING IP commandwith Source IP address set to the value of Local IP address obtained in the preceding sub-step, and Destination IP address set to the value of Peer IP address obtained in the preceding sub-step. Expected result: The BSC receives the statistics of ping packets.
–
For an MP link:
a.
Run the DSP MPGRP command to query the values of Link state, Local IP address, and peer IP address.
b.
Run the DSP MPLNK command to query the values of Link state and LCP negotiated state. Expected result: The command output shows that the link state is normal, the value of LCP Negotiation State is Connect available, and the values of Local IP Address and Peer IP Address are consistent with data configurations, proceed to the following steps. Otherwise, the transmission link is faulty. Locate and rectify the fault.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
29
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3.
2 Engineering Guidelines for Interfaces
Run the PING IP commandwith Source IP address set to the value of Local IP address obtained in the preceding sub-step, and Destination IP address set to the value of Peer IP address obtained in the preceding sub-step. Expected result: The BSC receives the statistics of ping packets.
Step 2 Verify the control plane data on the A interface. 1.
Run the DSP N7DPC commandto query the value of SCCP DSP state. Expected result: The value of SCCP DSP state is Accessible.
2.
Run the DSP M3LKS command to query the values of Operation state and Activated state. Expected result: The value of Operation state is Available, and the value of Activated state is Activated.
3.
Run the DSP SCTPLNK command to query the value of Operation state. Expected result: The value of Operation state is Normal.
Step 3 Verify the user plane data on the A interface. 1.
Run the DSP ADJNODE command to query the value of Operation state, number of paths to the adjacent node, and available bandwidth. Expected result: The value of Operation state is Available, and the related bandwidth is greater than 0.
2.
Run the DSP IPPATH command to query the value of Operation state. Expected result: The value of Operation state is Available, and the available bandwidth is greater than 0.
----End
2.4.4.5 Adjustment For details about how to perform configuration adjustment, see GBSS Reconfiguration Guide for BSC6900 (MML-Based).
2.4.4.6 Deactivation This feature does not need to be deactivated.
2.4.5 Performance Monitoring None
2.4.6 Parameter Optimization None
2.4.7 Troubleshooting For details about how to troubleshoot faults related to this feature, see GBSS Troubleshooting Guide.
2.5 GBFD-118603 Gb over IP Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
30
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.5.1 When to Use Gb over IP Use this feature to meet the growing demands for data services if the IP technology is supported.
2.5.2 Required Information Before deploying this feature, collect the following information: l
Operators' network plan
l
Local and peer IP addresses of the network service virtual link (NSVL) on the BSC side
l
Local and peer IP addresses of the NSVL on the SGSN side
2.5.3 Planning RF Planning N/A
Network Planning This feature supports L2 and L3 networking modes. To facilitate capacity expansion, L3 networking mode is recommended for the Gb interface.
Hardware Planning The BSC must be configured with the boards listed in the following table. NE
Required Board
BSC6900
l FG2a, FG2c, FG2e, GOUc, GOUd, or GOUe l DPUd or DPUg l A built-in PCU is required
BSC6910
l FG2c, FG2e, GOUc, GOUd, GOUe, or EXOUa/ EXOUb l EGPUa, EGPUb, EXPUa, or EXPUb
2.5.4 Deployment
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
31
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.5.4.1 Deployment Procedure Figure 2-9 Flowchart for deploying Gb over IP
2.5.4.2 Deployment Requirements Table 2-8 Deployment requirements
Issue 01 (2017-03-15)
Aspects
Requirement
Related features
See Related Features in IP Transmission Feature Parameter Description.
BSC
See 2.5.3 Planning. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
32
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Aspects
Requirement
BTS
None
GSM networking
The Gb interface uses IP over ETH transmission.
MS
None
MSC
None
License
The license controlling this feature has been activated. For details about the license control item, see License Control Item Description. For details about how to activate the license, see License Management Feature Parameter Description.
Others
The SGSN supports the Gb over IP feature. The equipment interconnected to the BSC must support the BFD function when the BFD-based IP fault detection function is used.
2.5.4.3 Data Preparation See BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide.
2.5.4.4 Initial Configuration Using MML Commands Step 1 On the BSC LMT, run the ADD BRD command to add an IP interface board. Step 2 Configure the physical layer and data link layer data. For details, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. Step 3 Configure the Gb interface data to support Gb over IP. For details, see BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide. Step 4 (Optional)Run the STR IPCHK command with Check type, Check mode, Peer IP address, and Multi hop BFD detect local ip set to appropriate values based on the actual networking.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
33
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
NOTE
l BFD requires support from both the local and peer devices. It takes effect only when enabled for both the local and peer devices. Otherwise, services will fail. l If the Ethernet ports work in active/standby mode, set Check mode to CHECK_ON_PRIMARY_PORT(Check on Active Port) ; if the Ethernet port works in independent mode, set Check mode to CHECK_ON_INDEPENDENT_PORT(Check on Independent Port). l If Check type is set to SBFD, single-hop BFD is enabled. In this case, set Peer IP address to an IP address that is on the same network segment as the local IP address. l If Check type is set to MBFD, multi-hop BFD is enabled. In this case, set Multi hop BFD detect local ip to the device IP or port IP of the local board, and set Peer IP address to an IP address on a different network segment from the local IP address.
----End
MML Command Examples For details about MML command examples for GBTS initial configuration, see section "Typical Configuration Scripts" in BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide.
Using the CME See BSC6900 GSM Initial Configuration Guide or BSC6910 GSM Initial Configuration Guide.
2.5.4.5 Activation Observation Step 1 On the BSC LMT, run the PING IP commandwith Subrack No., Slot No., Source IP address, and Destination IP address set to appropriate values. NOTE
l When Subnetwork Configure Mode of the NSE is DYNAMIC(Dynamic), set Source IP Address to the same value as Local IP Address in ADD NSVLLOCAL and Destination IP Address to the same value as Server IP in ADD NSE. l When Subnetwork Configure Mode of the NSE is STATIC(Static), set Source IP Address to the same value as Local IP Address in ADD NSVLLOCAL and Destination IP Address to the same value as Remote IP Address in ADD NSVLREMOTE.
Expected result: The statistics on PING packets can be received, indicating that the IP link on the Gb interface is functional. Step 2 Run the DSP GBIPROUTE commandwith NSE Identifier, Local NSVL ID, or Remote NSVL ID set to an appropriate value. Expected result: The value of IP Path State is Normal, indicating that the IP path at the service layer on the Gb interface is functional. Step 3 Run the DSP SIGBVC command with NSE Identifier set to an appropriate value to check whether SIG BVC State is Normal. Expected result: The value of SIG BVC State is Normal, indicating that the SIG PVC on the signaling plane of the Gb interface is normal. Step 4 Run the DSP NSVL command with NSE Identifier and NSVL Type, and Local NSVL ID or Remote NSVL ID set to appropriate values to query the value of NSVL State. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
34
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Expected result: The value of NSVL State is Normal. Step 5 Run the DSP PTPBVC command with NSE Identifier and PTP BVC Identifier set to appropriate values to query the value of Service State. Expected result: The value of Service State is Normal. Step 6 (Optional)Run the DSP IPCHK command to query the value of Check state. Expected result: The value of Check state is UP or DOWN. ----End
2.5.4.6 Adjustment For details about how to perform configuration adjustment, see GBSS Reconfiguration Guide for BSC6900 (MML-Based) or GBSS Reconfiguration Guide for BSC6910 (MML-Based).
2.5.4.7 Deactivation This feature does not need to be deactivated.
2.5.5 Performance Monitoring None
2.5.6 Parameter Optimization None
2.5.7 Troubleshooting For details about how to troubleshoot faults related to this feature, see GBSS Troubleshooting Guide.
2.6 IP Transmission over eCoordinator Interfaces The eCoordinator transmission interfaces include the Se, Sg, Sr, Sw, Su, M2, and M3 interfaces. l
For details about engineering guidelines for IP transmission over the Sg interface, see IP BSS Engineering Guide Feature Parameter Description for GSM BSS.
l
For details about engineering guidelines for IP transmission over the Sr interface, see IP RAN Engineering Guide Feature Parameter Description for WCDMA RAN.
l
For details about engineering guidelines for IP transmission over the Se and M2 interfaces, see Interface Self-planning Feature Parameter Description for LTE eRAN.
l
For details about engineering guidelines for IP transmission over the Sw and Su interfaces, see Intelligent Wi-Fi Selection based on eCoordinator Feature Parameter Description for SingleRAN.
l
For details about engineering guidelines for IP transmission over the M3 interface, see eCoordinator Product Documentation.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
35
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.6.1 When to Use IP Transmission Enable IP transmission over the eCoordinator interfaces when the eCoordinator is deployed for coordination on LTE networks or among GSM, UMTS, and LTE networks.
2.6.2 Required Information l
Physical layer: port and VLAN configurations of peer equipment at the physical layer
l
Link layer: SCTP configurations of the peer equipment
l
Transport layer: IP addresses, maximum transmission unit (MTU), and differentiated services code point (DSCP) of the peer equipment and next-hop equipment
2.6.3 Planning 2.6.3.1 Network Planning It is recommended that Layer 3 networking with IP over Ethernet be used between the eCoordinator and base station controllers or eNodeBs.
2.6.3.2 Hardware Planning The EXOUa, EXOUb, FG2c, GOUc, GOUd, and GOUe boards of the eCoordinator support this feature.
2.6.4 Deployment 2.6.4.1 Process Figure 2-10 shows the procedure for deploying IP transmission over an eCoordinator interface.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
36
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Figure 2-10 Procedure for deploying IP transmission over an eCoordinator interface
2.6.4.2 Requirements QoS of the Bearer Network The requirements on the QoS of the bearer network are the same as those on radio interfaces: l
The QoS requirements of the Sg interface are the same as those of the Abis interface.
License N/A
Other Requirements l
The peer BSC supports the Sg interface.
2.6.4.3 Data Preparation For details about data preparation, see section "Data Preparation for Initial Configuration" in ECO6910 Initial Configuration Guide (MML-Based).
2.6.4.4 Activation For details about how to activate this feature, see "Configuring the Interfaces" in ECO6910 Initial Configuration Guide. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
37
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
2.6.4.5 Activation Observation On the eCoordinator Side Step 1 Run the DSP SCTPLNK command to check the value of Operation state in the command output. Expected result: Operation state is Available. Step 2 (Optional) Trace the corresponding interface on the eCoordinator LMT. On the Basic page, perform the following settings based the radio access mode: l
For GSM, set Trace Type to SCTP and SCTPAP to enable Sg Interface Trace.
For details, see ECO6910 LMT User Guide. Expected result: An ACK message is returned for SCTP trace and SCTPAP trace in the corresponding interface tracing results. The following table lists eCoordinator counters related to IP transmission. Counter ID
Counter Name
Counter Description
67191612
VS.SCTP.RX.PKGNUM
Number of IP packets received on the SCTP link
67191613
VS.SCTP.TX.PKGNUM
Number of IP packets transmitted on the SCTP link
----End
On the BSC Side Step 1 Run the DSP SCTPLNK command to check the value of Operation state in the command output. Expected result: Operation state is Available. Step 2 (Optional) Enable Sg Interface Trace on the LMT. On the Basic page, set Trace Type to SCTP and SCTPAP. For details, see BSC6910 GU LMT User Guide. Expected result: An ACK message is returned for SCTP trace and SCTPAP trace in the Sg interface tracing results. The following table lists BSC counters related to IP transmission over the Sg interface.
Issue 01 (2017-03-15)
Counter ID
Counter Name
Counter Description
67191612
VS.SCTP.RX.PKGNUM
Number of IP Packets Received on the SCTP Link
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
38
GSM BSS IP BSS Engineering Guide Feature Parameter Description
2 Engineering Guidelines for Interfaces
Counter ID
Counter Name
Counter Description
67191613
VS.SCTP.TX.PKGNUM
Number of IP Packets Transmitted on the SCTP Link
----End
2.6.4.6 Reconfiguration For details, see ECO6910 Reconfiguration Guide.
2.6.4.7 Deactivation N/A
2.6.5 Performance Monitoring None
2.6.6 Parameter Optimization None
2.6.7 Troubleshooting For details about how to handle alarms, see section "Transport Alarm" in ECO6910 Alarm Reference.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
39
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3
3 Engineering Guidelines for Transmission Reliability
Engineering Guidelines for Transmission Reliability
3.1 Ethernet Port Backup for the Base Station Controller 3.1.1 When to Use Ethernet Port Backup for the Base Station Controller Enable Ethernet Port Backup for the base station controller when Layer 3 networking is adopted between the router on which VRRP is enabled and the base station controller.
3.1.2 Planning 3.1.2.1 Network Planning The base station controller uses active and standby ports configured separately on its active and standby boards to connect the routers.
3.1.2.2 Hardware Planning The following BSC6900 boards support Ethernet port backup: l
FG2a/FG2c/FG2e
l
GOUa/GOUc/GOUd
3.1.3 Deployment 3.1.3.1 Requirements If the base station controller is directly connected to the router, the router supports VRRP over VLANIF. If the base station controller does not directly connect to the router, a switch is deployed to link the base station controller with the router. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
40
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.1.3.2 Activation 3.1.3.2.1 Using MML Commands Step 1 Run the ADD ETHREDPORT command with Subrack No., Slot No., and Port No. set to the location where the Ethernet ports on the active board are. Step 2 Run the ADD ETHIP command to set the IP address of the Ethernet port. Step 3 Run the STR IPCHK command to enable BFD between the IP address of the Ethernet port and one of the real IP addresses of the VRRP-enabled routers, with Check type set to SBFD, Carry port type set to ETHPORT, Whether affect the port swapping set to YES(YES), and Route associated flag set to NO(NO). Step 4 Run the STR IPCHK command to enable BFD between the IP address of the Ethernet port and the other real IP address of the VRRP-enabled routers, with Check type set to SBFD, Carry port type set to ETHPORT, Whether affect the port swapping set to YES(YES), and Route associated flag set to NO(NO). ----End
3.1.3.2.2 MML Command Examples //Activating Ethernet port backup on the base station controller side ADD ETHREDPORT: SRN=2, SN=26, PN=1; ADD ETHIP: SRN=2, SN=26, PN=1, IPINDEX=0, IPADDR="126.126.126.1", MASK="255.255.255.0"; STR IPCHK: SRN=2, SN=26, CHKN=0, CHKTYPE=SBFD, CARRYT=ETHPORT, PN=1, PEERIP="10.10.12.2", ROUTEASSOCIATEDFLAG=NO; STR IPCHK: SRN=2, SN=26, CHKN=1, CHKTYPE=SBFD, CARRYT=ETHPORT, PN=1, PEERIP="126.126.126.3", ROUTEASSOCIATEDFLAG=NO;
3.1.3.2.3 Using the CME
3.1.3.3 Activation Observation Step 1 Run the DSP ETHPORT command to check whether the Ethernet port is functional. Step 2 Run the PING IP command to check whether the IP address between the local and peer ends can be pinged. Step 3 Disconnect the cable from the active port, and then run the PING IP command to check whether the IP address between the local and peer ends can be pinged. Step 4 Connect the cable to the active port and disconnect the cable from the standby port, and then run the PING IP command to check whether the IP address between the local and peer ends can be pinged. Step 5 Connect the cable to the standby port. ----End
3.1.3.4 Deactivation Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
41
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.1.3.4.1 Using MML Commands Step 1 Run the STP IPCHK command to disable BFD. Step 2 Run the RMV ETHIP command to remove the IP address of the Ethernet port. Step 3 Run the RMV ETHREDPORT command to remove the Ethernet port. ----End
3.1.3.4.2 MML Command Examples //Deactivating Ethernet port backup on the base station controller side STP IPCHK: SRN=0, SN=26, CHKN=0; STP IPCHK: SRN=0, SN=26, CHKN=1; RMV ETHIP: SRN=2, SN=26, PN=2, IPINDEX=0; RMV ETHREDPORT: SRN=2, SN=26, PN=2;
3.1.4 Performance Monitoring Run the MML command DSP ETHPORT to check whether the Ethernet port is functional.
3.1.5 Troubleshooting If ALM-21346 IP Connectivity Check Failure and ALM-21345 Ethernet Link Fault are reported, clear them by referring to the alarm handling suggestions.
3.2 Ethernet Route Backup for the Base Station Controller 3.2.1 When to Use Ethernet Route Backup for the Base Station Controller Enable Ethernet route backup for the base station controller when Layer 3 networking is adopted between the routers that serve as active/standby gateways and the base station controller.
3.2.2 Planning 3.2.2.1 Network Planning The base station controller uses active and standby routes configured separately on its active and standby boards to connect the active and standby routers.
3.2.2.2 Hardware Planning The following boards support Ethernet route backup for the base station controller: l
BSC6900: FG2a/FG2c/FG2e and GOUa/GOUc/GOUd
l
BSC6910: FG2c/FG2e, GOUc/GOUd, and EXOUa/EXOUb
3.2.3 Deployment Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
42
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.2.3.1 Requirements A standby route to the base station controller is configured on both the active and standby gateways. If the active route is faulty, the gateway router can return packets to the base station controller through the standby route. When no IP transmission resource pool is configured, destination-based routing needs to be adopted on the base station controller. When IP transmission resource pools are configured, source-based routing needs to be adopted on the base station controller.
3.2.3.2 Data Preparation Table 3-1 Data to prepare when destination-based routing is used Parameter Name
Parameter ID
Setting Notes
Data Source
Forward route address
NEXTHOP(BSC6910 ,BSC6900)
Set this parameter to the IP address of the active/ standby gateway.
Transport network plan
Priority
PRIORITY(BSC6910 ,BSC6900)
Set this parameter to HIGH for the active gateway and LOW for the standby gateway.
Transport network plan
Table 3-2 Data to prepare when source-based routing is used Parameter Name
Parameter ID
Setting Notes
Data Source
Forward route address
NEXTHOP(BSC6910 ,BSC6900)
Set this parameter to the IP address of the active gateway.
Transport network plan
Standby next hop
STANDBYNEXTHO P(BSC6910,BSC6900 )
Set this parameter to the IP address of the standby gateway.
Transport network plan
3.2.3.3 Activation 3.2.3.3.1 Using MML Commands If destination-based routing is adopted on the base station controller, perform the following steps: Step 1 Run the ADD IPRT command with Forward route address set to the IP address of the active gateway and Priority to HIGH.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
43
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Step 2 Run the ADD IPRT command with Forward route address set to the IP address of the standby gateway and Priority to LOW. ----End If source-based routing is adopted on the base station controller, perform the following steps: Step 1 Run the ADD SRCIPRT command with Forward route address set to the IP address of the active gateway, Standby Next hop switch to YES(YES), and Standby next hop to the IP address of the standby gateway. Step 2 Run the STR IPCHK command with Check type set to SBFD, Carry port type to ETHPORT, Check mode to CHECK_ON_INDEPENDENT_PORT(Check on Independent Port), Route associated flag to YES(YES), and Route Switchover Delay to the route convergence time of the router connected to the base station controller to start BFD for the active gateway router. Step 3 Run the STR IPCHK command with Check type set to SBFD, Carry port type to ETHPORT, Check mode to CHECK_ON_INDEPENDENT_PORT(Check on Independent Port), and Route associated flag to YES(YES) to start BFD for the standby gateway router. ----End
3.2.3.3.2 MML Command Examples //Activating Ethernet route backup for the base station controller //If destination-based routing is used ADD IPRT:SRN=2,SN=26,DSTIP="10.10.10.10",DSTMASK="255.255.255.255",NEXTHOPTYPE=Gateway ,NEXTHOP="10.10.12.2",PRIORITY=HIGH; ADD IPRT:SRN=2,SN=26,DSTIP="10.10.10.10",DSTMASK="255.255.255.255",NEXTHOPTYPE=Gateway ,NEXTHOP="10.10.13.2",PRIORITY=LOW; //If source-based routing is used ADD SRCIPRT:SRN=2,SN=26,IPTYPE=DEVIP,SRCIPADDR="20.20.20.1",NEXTHOP="10.10.12.2",STAND BYNEXTHOPSWITCH=YES,STANDBYNEXTHOP="10.10.13.2"; //Activating BFD between the base station controller and router STR IPCHK:SRN=2,SN=26,CHKN=0,CHKTYPE=SBFD,CARRYT=ETHPORT,PN=1,PEERIP="10.10.12.2",ROUT EASSOCIATEDFLAG=YES,ROUTESWITCHOVERDELAY=0; STR IPCHK:SRN=2,SN=27,CHKN=1,CHKTYPE=SBFD,CARRYT=ETHPORT,PN=1,PEERIP="10.10.13.2",ROUT EASSOCIATEDFLAG=YES;
3.2.3.4 Activation Observation If destination-based routing is used, perform the following steps: Step 1 Run the DSP IPRT command to check whether the route has taken effect. ----End If source-based routing is used, perform the following steps: Step 1 Run the DSP SRCIPRT command to check whether the route has taken effect. Step 2 Run the PING IP command to check whether the IP address of the two ends can be pinged. ----End Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
44
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.2.3.5 Deactivation 3.2.3.5.1 Using MML Commands If destination-based routing is adopted: Step 1 Run the STP IPCHK command to disable BFD. Step 2 Run the RMV IPRT command to remove the standby and active routes. If the removal fails, perform operations as prompted. ----End If source-based routing is adopted: Step 1 Run the STP IPCHK command to disable BFD. Step 2 Run the RMV SRCIPRT command to remove the active and standby gateways. If the removal fails, perform operations as prompted. ----End
3.2.3.5.2 MML Command Examples //Deactivating Ethernet route backup for the base station controller STP IPCHK: SRN=0, SN=26, CHKN=0; STP IPCHK: SRN=0, SN=26, CHKN=1; //If destination-based routing is used RMV IPRT: SRN=2, SN=26, DSTIP="10.10.10.10", DSTMASK="255.255.255.255", NEXTHOPTYPE=Gateway, NEXTHOP="10.10.13.2"; RMV IPRT: SRN=2, SN=26, DSTIP="10.10.10.10", DSTMASK="255.255.255.255", NEXTHOPTYPE=Gateway, NEXTHOP="10.10.12.2"; //If source-based routing is used RMV SRCIPRT: SRN=2, SN=26, SRCIPADDR="20.20.20.1";
3.2.3.6 Reconfiguration If destination-based routing is used, run the MOD IPRT command to perform the reconfiguration. If source-based routing is used, run the MOD SCRIPRT command to perform the reconfiguration.
3.2.4 Performance Monitoring If destination-based routing is used, run the DSP IPRT command to check whether the route has taken effect. If source-based routing is used, run the DSP SRCIPRT command to check whether the route has taken effect.
3.2.5 Troubleshooting If ALM-21346 IP Connectivity Check Failure is reported, clear the alarm by referring to the alarm handling suggestions.
3.3 Ethernet Route Backup for the Base Station Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
45
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.3.1 When to Use Ethernet Route Backup for the Base Station Enable Ethernet route backup for the base station when Layer 3 networking is adopted between the routers that serve as active/standby gateways and the base station.
3.3.2 Planning 3.3.2.1 Network Planning A physical port of the base station connects, through a Layer 2 network, to the router that supports active/standby gateways. The base station supports source-based routing and destination-based routing. For details about the route policy and application scenarios, see IP Transmission Feature Parameter Description.
3.3.2.2 Hardware Planning The following boards support Ethernet route backup for the base station: l
GTMUb/GTMUc
l
WMPT/UMPT/LMPT
l
UTRPc/UTRP (using the daughter board UEOC/UQEC/UIEC)/UCCU
3.3.3 Deployment 3.3.3.1 Requirements License No license is required for the eGBTS or NodeB. The operator must have purchased and activated the license for the features listed in the following table if the features are to be deployed for the eNodeB. Feature ID
Feature Name
License Control Item
NE
Sales Unit
LOFD-003006
IP Route Backup
IP Route Backup
eNodeB
per eNodeB
TDLOFD-0030 06
IP Route Backup
IP Route Backup
eNodeB
per eNodeB
Others A standby route to the base station is configured on both the active and standby gateways. Even if the active route is faulty, the gateway router can return packets to the base station through the standby route. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
46
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.3.3.2 Data Preparation Table 3-3 Data to prepare for Ethernet route backup for the NodeB, eNodeB, eGBTS, and coMPT base station Parameter Name
Parameter ID
Setting Notes
Data Source
Next Hop IP
NEXTHOP
Set this parameter to the IP address of the active/standby gateway.
Transport network plan
Preference
PREF
The active gateway takes precedence over the standby gateway.
Transport network plan
NOTE A smaller value of this parameter indicates a higher route priority.
Table 3-4 Data to prepare for Ethernet route backup for the GBTS Parameter Name
Parameter ID
Setting Notes
Data Source
Route Priority
PRI(BSC6910,BSC69 00)
The active gateway takes precedence over the standby gateway.
Transport network plan
Forward route address
NEXTHOP(BSC6910 ,BSC6900)
Set this parameter to the IP address of the active/standby gateway.
Transport network plan
3.3.3.3 Activation 3.3.3.3.1 Using MML Commands Perform the following steps for the NodeB, eNodeB, eGBTS, and co-MPT base station: Step 1 Run the ADD IPRT command with Next Hop IP set to the IP address of the active gateway and Preference to 60. Step 2 Run the ADD IPRT command with Next Hop IP set to the IP address of the standby gateway and Preference to 80. Step 3 Run the ADD BFDSESSION command with Hop Type set to SINGLE_HOP(Single Hop) and Session Catalog to RELIABILITY(Reliability) to start BFD for the active gateway router. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
47
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Step 4 Run the ADD BFDSESSION command with Hop Type set to SINGLE_HOP(Single Hop) and Session Catalog to RELIABILITY(Reliability) to start BFD for the standby gateway router. Step 5 (Optional) Run the SET GTRANSPARA command with Switch Back Time set to 300. ----End NOTE
Set Protocol Version to the BFD session protocol version supported by the peer device.
Perform the following steps for the GBTS: Step 1 Run the ADD BTSIPRT command with Forward route address set to the IP address of the active gateway and Route Priority to 60. Step 2 Run the ADD BTSIPRT command with Forward route address set to the IP address of the standby gateway and Route Priority to 80. Step 3 Run the ADD BTSBFD command with Hop Type set to SBFD(SINGLE_HOP) to start BFD for the active gateway router. Step 4 Run the ADD BTSBFD command with Hop Type set to SBFD(SINGLE_HOP) to start BFD for the standby gateway router. Step 5 (Optional) Run the SET BTSGTRANSPARA command with Route switching delay set to 300. ----End
3.3.3.3.2 MML Command Examples //Activating Ethernet route backup for the NodeB, eNodeB, eGBTS, and co-MPT base station ADD IPRT: RTIDX=0, SN=7, SBT=BASE_BOARD, DSTIP="10.10.10.10", DSTMASK="255.255.255.255", RTTYPE=NEXTHOP, NEXTHOP="10.10.12.2", PREF=60; ADD IPRT: RTIDX=1, SN=7, SBT=BASE_BOARD, DSTIP="10.10.10.10", DSTMASK="255.255.255.255", RTTYPE=NEXTHOP, NEXTHOP="10.10.13.2", PREF=80; ADD BFDSESSION: SN=7, BFDSN=0, SRCIP="126.126.126.1", DSTIP="10.10.12.2", HT=SINGLE_HOP, CATLOG=RELIABILITY, DSCP=48, VER=STANDARD; ADD BFDSESSION: SN=7, BFDSN=1, SRCIP="126.126.127.1", DSTIP="10.10.13.2", HT=SINGLE_HOP, CATLOG=RELIABILITY, DSCP=48, VER=STANDARD; SET GTRANSPARA: SBTIME=300; //Activating Ethernet route backup for the GBTS ADD BTSIPRT: IDTYPE=BYID, BTSID=8, RTIDX=0, DSTIP="10.10.10.1", DSTMASK="255.255.255.255", PRI=60,RTTYPE=NEXTHOP, NEXTHOP="10.10.12.2"; ADD BTSIPRT: IDTYPE=BYID, BTSID=8, RTIDX=1, DSTIP="10.10.10.1", DSTMASK="255.255.255.255", PRI=80,RTTYPE=NEXTHOP, NEXTHOP="10.10.13.2"; ADD BTSBFD: IDTYPE=BYID, BTSID=8, BFDSN=0, SRCIP="126.126.126.1", DSTIP="10.10.12.2", HT=SBFD; ADD BTSBFD: IDTYPE=BYID, BTSID=8, BFDSN=1, SRCIP="126.126.127.1", DSTIP="10.10.13.2", HT=SBFD; SET BTSGTRANSPARA: IDTYPE=BYID, BTSID=8, RoutingBackDelayTime=300;
3.3.3.3.3 Using the CME It is recommended that parameters be configured along with the transmission data of the corresponding NE. For details, see Initial Configuration Guide of the corresponding NE.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
48
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.3.3.4 Activation Observation The following describes activation observation of Ethernet route backup for the NodeB, eNodeB, eGBTS, and co-MPT base station. IP route backup is flexible to implement and verify. For two IP routes with the same destination IP address but different priorities and next-hop IP addresses, data is transmitted on the IP route with a higher priority if both the IP routes are functional. When the IP route with a higher priority becomes faulty, the other IP route takes over to perform data transmission if the IP route backup is activated. Before the verification, run the DSP IPRT command to check whether both routes are in the routing table. If they are, the active and standby IP routes are functional, and the verification can be continued. The verification procedure is as follows: Step 1 Run the TRACERT command to check the active route. In the command output, the route with the first hop IP address being the next hop IP address is the active route. Step 2 Trigger a fault in the active route, and then run the DSP IPRT command to check whether Valid State of IP Route of the active route is Invalid. Expected result: Valid State of IP Route of the active route is Invalid. Step 3 Run the TRACERT command to verify the switchover. The switchover is successful if the first hop IP address is the next hop IP address of the standby route in the command output. Step 4 Restore the transmission link of the IP route with the higher priority. ----End
3.3.3.5 Deactivation 3.3.3.5.1 Using MML Commands To disable Ethernet route backup for the NodeB, eNodeB, eGBTS, or co-MPT base station, perform the following steps: Step 1 Run the RMV BFDSESSION command to disable BFD. Step 2 Run the RMV IPRT command to remove the low-priority and high-priority IP routes. If the removal fails, perform operations as prompted. ----End To disable Ethernet route backup for the GBTS, perform the following steps: Step 1 Run the RMV BTSBFD command to disable BFD. Step 2 Run the RMV BTSIPRT command to remove the low-priority and high-priority IP routes. If the removal fails, perform operations as prompted. ----End Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
49
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.3.3.5.2 MML Command Examples //Deactivating Ethernet route backup for the NodeB, eNodeB, eGBTS, or co-MPT base station RMV BFDSESSION: SN=7, BFDSN=0; RMV BFDSESSION: SN=7, BFDSN=1; RMV IPRT: RTIDX=0; RMV IPRT: RTIDX=1; //Deactivating Ethernet route backup for the GBTS RMV BTSBFD: IDTYPE=BYID, BTSID=8, BFDSN=0; RMV BTSBFD: IDTYPE=BYID, BTSID=8, BFDSN=1; RMV BTSIPRT: IDTYPE=BYID, BTSID=8, RTIDX=0; RMV BTSIPRT: IDTYPE=BYID, BTSID=8, RTIDX=1;
3.3.3.6 Reconfiguration For the NodeB, eNodeB, eGBTS, and co-MPT base station, run the MOD IPRT command to perform the reconfiguration. For the GBTS, run the MOD BTSIPRT command to perform the reconfiguration.
3.3.4 Performance Monitoring To check whether Ethernet route backup for base stations has taken effect, perform the following steps: l
For the NodeB, eNodeB, eGBTS, or co-MPT base station, run the DSP IPRT command to query the status of the Ethernet routes.
l
For the GBTS, run the DSP BTSIPRT command to query the status of the Ethernet routes.
3.3.5 Troubleshooting If ALM-25899 BFD Session Fault is reported, clear the alarm by referring to the alarm handling suggestions.
3.4 Link Aggregation in Scenario 1 3.4.1 When to Use Link Aggregation in Scenario 1 Enable link aggregation when Layer 3 networking is adopted between the router on which VRRP is enabled and the base station controller.
3.4.2 Planning 3.4.2.1 Network Planning Manual active/standby link aggregation is performed on the active and standby boards of the base station controller. The base station controller is connected to the router on which VRRP is enabled. The peer device does not need to support link aggregation.
3.4.2.2 Hardware Planning The following boards support link aggregation: Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
50
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
l
BSC6900: FG2a/FG2c/FG2e and GOUa/GOUc/GOUd
l
BSC6910: FG2c/FG2e, GOUc/GOUd, and EXOUa/EXOUb
3.4.3 Deployment 3.4.3.1 Requirements License None
Others If the base station controller is directly connected to the router, the router supports VRRP over VLANIF. If the base station controller is not directly connected to the router, the switch must be configured to link the base station controller with the router.
3.4.3.2 Data Preparation Table 3-5 Data to prepare for link aggregation Parameter Name
Parameter ID
Setting Notes
Data Source
Trunk group work mode
WORKMODE(BSC6 910,BSC6900)
Set this parameter to ACTIVE_STAND BY(Active standby).
Transport network plan
Aggregation Mode
LACPMODE(BSC69 10,BSC6900)
Set this parameter to MANUAL_AGGR EGATION.
Transport network plan
Revertive type
RT(BSC6910,BSC69 00)
Set this parameter to NONREVERTIVE(NO N-REVERTIVE).
Transport network plan
3.4.3.3 Activation 3.4.3.3.1 Using MML Commands Step 1 Run the ADD ETHTRK command with Trunk group work mode set to ACTIVE_STANDBY(Active standby), Aggregation Mode to MANUAL_AGGREGATION, and Revertive type to NON-REVERTIVE(NONREVERTIVE) to add a link aggregation group. Step 2 Run the ADD ETHTRKLNK command with Trunk group work mode set to ACTIVE_STANDBY(Active standby) to add the link to the link aggregation group for the port on the active board. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
51
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Step 3 Run the ADD ETHTRKLNK command with Trunk group work mode set to ACTIVE_STANDBY(Active standby) to add the link to the link aggregation group for the port on the standby board. NOTE
Port priority of the port on the standby board must be higher than that of the port on the active board. A larger value indicates a lower priority.
Step 4 Run the ADD ETHTRKIP command to configure the IP address of the link aggregation group. Step 5 Run the STR IPCHK command with Check type set to SBFD, Carry port type to TRUNK, and Whether affect the port swapping to YES(YES) to enable BFD between the link aggregation group and one of the real IP addresses of the VRRP-enabled router. Step 6 Run the STR IPCHK command with Check type set to SBFD, Carry port type to TRUNK, and Whether affect the port swapping to YES(YES) to enable BFD between the link aggregation group and the other real IP address of the VRRP-enabled router. ----End
3.4.3.3.2 MML Command Examples //Activating link aggregation ADD ETHTRK: SRN=2, SN=26, TRKN=2, WORKMODE=ACTIVE_STANDBY, RT=NON-REVERTIVE, LACPMODE=MANUAL_AGGREGATION; ADD ETHTRKLNK: SRN=2, SN=26, TRKN=2, TRKLNKSN=26, TRKLNKPN=0, WORKMODE=ACTIVE_STANDBY, PORTPRI=100; ADD ETHTRKLNK: SRN=2, SN=26, TRKN=2, TRKLNKSN=27, TRKLNKPN=1, WORKMODE=ACTIVE_STANDBY, PORTPRI=101; ADD ETHTRKIP: SRN=2, SN=26, TRKN=2, IPINDEX=0, IPADDR="126.126.126.1", MASK="255.255.255.0"; STR IPCHK: SRN=2, SN=26, CHKN=0, CHKTYPE=SBFD, CARRYT=TRUNK, WORKMODE=ACTIVE_STANDBY, TRUNKN=2, PEERIP="10.10.12.2", WHETHERAFFECTSWAP=YES; STR IPCHK: SRN=2, SN=26, CHKN=0, CHKTYPE=SBFD, CARRYT=TRUNK, WORKMODE=ACTIVE_STANDBY, TRUNKN=2, PEERIP="126.126.126.3", WHETHERAFFECTSWAP=YES;
3.4.3.4 Activation Observation To check whether link aggregation has taken effect, perform the following steps: Step 1 Run the DSP ETHTRK command to check whether the link aggregation group is functional. Step 2 Run the DSP ETHTRKLNK command to check whether the links in the link aggregation group are functional. Step 3 Run the PING IP command to check whether the IP address of the two ends can be pinged. ----End
3.4.3.5 Deactivation 3.4.3.5.1 Using MML Commands Step 1 Run the STP IPCHK command to disable BFD. Step 2 Run the RMV ETHTRKIP command to remove the IP address of the link aggregation group. If the removal fails, perform operations as prompted. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
52
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Step 3 Run the RMV ETHTRKLNK command to remove the ports/links from the link aggregation group. Step 4 Run the RMV ETHTRK command to remove the link aggregation group. ----End
3.4.3.5.2 MML Command Examples //Deactivating link aggregation STP IPCHK: SRN=0, SN=26, CHKN=0; STP IPCHK: SRN=0, SN=26, CHKN=1; RMV ETHTRKIP: SRN=2, SN=26, TRKN=2, IPINDEX=0; RMV ETHTRKLNK: SRN=2, TRKLNKSN=26, TRKLNKPN=1; RMV ETHTRKLNK: SRN=2, TRKLNKSN=26, TRKLNKPN=0; RMV ETHTRK: SRN=2, SN=26, TRKN=2;
3.4.3.6 Reconfiguration If the IP address of the port used by the link aggregation group, run the MOD ETHTRKIP command to perform the reconfiguration.
3.4.4 Performance Monitoring Run the DSP ETHTRK command to check whether the link aggregation group is functional. Run the DSP ETHTRKLNK command to check whether the links in the link aggregation group are functional.
3.4.5 Troubleshooting If ALM-21346 IP Connectivity Check Failure is reported, clear the alarm by referring to the alarm handling suggestions.
3.5 Link Aggregation in Scenario 2 3.5.1 When to Use Link Aggregation in Scenario 2 Enable link aggregation when Layer 2 networking is used between the base station controller and Layer 2 transmission equipment that supports support link aggregation group.
3.5.2 Planning 3.5.2.1 Network Planning Distribute link aggregation group (DLAG) is configured on the active and standby boards of the base station controller that connects to the Layer 2 transmission equipment. The active and standby boards of the base station controller each provide a port to implement link aggregation in static active/standby mode.
3.5.2.2 Hardware Planning The following boards support link aggregation: Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
53
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
l
BSC6900: FG2a/FG2c/FG2e and GOUa/GOUc/GOUd
l
BSC6910: FG2c/FG2e, GOUc/GOUd, and EXOUa/EXOUb
3.5.3 Deployment 3.5.3.1 Requirements The base station controller is directly connected to Layer 2 transmission equipment that supports link aggregation.
3.5.3.2 Data Preparation Table 3-6 Data to prepare for link aggregation Parameter Name
Parameter ID
Setting Notes
Data Source
Trunk group work mode
WORKMODE(BSC6 910,BSC6900)
Set this parameter to ACTIVE_STANDB Y(Active standby).
Transport network plan (negotiation required)
Aggregation Mode
LACPMODE(BSC69 10,BSC6900)
Set this parameter to STATIC_LACP.
Transport network plan (negotiation required)
Revertive type
RT(BSC6910,BSC69 00)
Set this parameter to NONREVERTIVE(NONREVERTIVE).
Transport network plan (negotiation required)
Trunk system priority
SYSPRI(BSC6910,B SC6900)
Set this parameter to be lower than the priority of the peer device.
Transport network plan (negotiation required)
Note that a larger value indicates a lower priority.
3.5.3.3 Activation 3.5.3.3.1 Using MML Commands Step 1 Add a link aggregation group. Run the ADD ETHTRK command with Trunk group work mode set to ACTIVE_STANDBY(Active standby), Aggregation Mode to STATIC_LACP, Revertive type to NON-REVERTIVE(NON-REVERTIVE), and Trunk system priority to a value larger than the priority of the peer device. Step 2 Add a link to the link aggregation group for the port on the active board Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
54
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Run the ADD ETHTRKLNK command with Trunk group work mode set to ACTIVE_STANDBY(Active standby). Step 3 Add a link to the link aggregation group for the port on the standby board Run the ADD ETHTRKLNK command with Trunk group work mode set to ACTIVE_STANDBY(Active standby). NOTE
Port priority of the port on the standby board must be higher than that of the port on the active board. A larger value indicates a lower priority.
Step 4 Run the ADD ETHTRKIP command to set the IP address of the link aggregation group. ----End
3.5.3.3.2 MML Command Examples //Activating link aggregation ADD ETHTRK: SRN=2, SN=26, TRKN=2, WORKMODE=ACTIVE_STANDBY, SYSPRI=100, RT=NONREVERTIVE, LACPMODE=STATIC_LACP; ADD ETHTRKLNK: SRN=2, SN=26, TRKN=2, TRKLNKSN=26, TRKLNKPN=0, WORKMODE=ACTIVE_STANDBY, PORTPRI=100; ADD ETHTRKLNK: SRN=2, SN=26, TRKN=2, TRKLNKSN=27, TRKLNKPN=1, WORKMODE=ACTIVE_STANDBY, PORTPRI=101; ADD ETHTRKIP: SRN=2, SN=26, TRKN=2, IPINDEX=0, IPADDR="126.126.126.1", MASK="255.255.255.0";
3.5.3.4 Activation Observation To check whether link aggregation has taken effect, perform the following steps: Step 1 Run the DSP ETHTRK command to check whether the link aggregation group is functional. Step 2 Run the DSP ETHTRKLNK command to check whether the links in the link aggregation group are functional. Step 3 Run the PING IP command to check whether the IP address of the two ends can be pinged. ----End
3.5.3.5 Deactivation 3.5.3.5.1 Using MML Commands Step 1 Run the RMV ETHTRKIP command to remove the IP address of the link aggregation group. If the removal fails, perform operations as prompted. Step 2 Run the RMV ETHTRKLNK command to remove the ports/links from the link aggregation group. Step 3 Run the RMV ETHTRK command to remove the link aggregation group. ----End
3.5.3.5.2 MML Command Examples //Deactivating link aggregation RMV ETHTRKIP: SRN=2, SN=26, TRKN=2, IPINDEX=0; RMV ETHTRKLNK: SRN=2, TRKLNKSN=26, TRKLNKPN=1;
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
55
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
RMV ETHTRKLNK: SRN=2, TRKLNKSN=26, TRKLNKPN=0; RMV ETHTRK: SRN=2, SN=26, TRKN=2;
3.5.3.6 Reconfiguration If the IP address of the port used by the link aggregation group, run the MOD ETHTRKIP command to perform the reconfiguration.
3.5.4 Performance Monitoring Run the DSP ETHTRK command to check whether the link aggregation group is functional. Run the DSP ETHTRKLNK command to check whether the links in the link aggregation group are functional.
3.5.5 Troubleshooting If ALM-21349 Ethernet Trunk Group Fault and ALM-21350 Ethernet Trunk Link Fault are reported, clear them by referring to the alarm handling suggestions.
3.6 Link Aggregation in Scenario 3 3.6.1 When to Use Link Aggregation in Scenario 3 Enable link aggregation when Layer 2 or Layer 3 networking is used between the base station and transmission equipment that supports support link aggregation group.
3.6.2 Planning 3.6.2.1 Network Planning None
3.6.2.2 Hardware Planning The UMPT/WMPT/LMPT and UTRP2/UTRP9/UTRPc/UCCU boards of the 3900 series base stations support link aggregation. The base station provides multiple FE or GE/10GE ports, and these ports are either electrical or optical. The ports on a board of the base station form a static link aggregation group and work in load sharing mode.
3.6.3 Deployment 3.6.3.1 Requirements License No license is required for the eGBTS or NodeB. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
56
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
The operator must have purchased and activated the license for the features listed in the following table if the features are to be deployed for the eNodeB. Feature ID
Feature Name
License Control Item
NE
Sales Unit
LOFD-003008
Ethernet Link Aggregation (IEEE 802.3ad)
Ethernet Link Aggregation (IEEE 802.3ad) (FDD)
eNodeB
per eNodeB
TDLOFD-0030 08
Ethernet Link Aggregation (IEEE 802.3ad)
Ethernet Link Aggregation(IE EE 802.3ad) (TDD)
eNodeB
per eNodeB
Others The base station is directly connected to Layer 2 or Layer 3 transmission equipment that supports link aggregation.
3.6.3.2 Data Preparation Table 3-7 Data to prepare for link aggregation Parameter Name
Parameter ID
Setting Notes
Data Source
Trunk Type
LACP
Set this parameter to ENABLE(Enable LACP).
Transport network plan (negotiation required)
3.6.3.3 Activation 3.6.3.3.1 Using MML Commands Step 1 Run the ADD ETHTRK command to add a link aggregation group. Step 2 Run the ADD ETHTRKLNK command with Master Flag set to YES(Yes) to add a primary port to the link aggregation group. Step 3 Run the ADD ETHTRKLNK command with Master Flag set to NO(No) to add another port to the link aggregation group. Repeat this step until all required ports are added. Step 4 Run the ADD DEVIP command with Port Type set to ETHTRK(Ethernet Trunk) and Port No. to the value of Trunk No.. ----End Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
57
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.6.3.3.2 MML Command Examples //Activating link aggregation ADD ETHTRK: SN=5, SBT=ETH_COVERBOARD, TN=0, LACP=ENABLE; ADD ETHTRKLNK: SN=5, SBT=ETH_COVERBOARD, TN=0, PN=0, FLAG=YES; ADD ETHTRKLNK: SN=5, SBT=ETH_COVERBOARD, TN=0, PN=1, FLAG=NO; ADD DEVIP: SN=5, SBT=ETH_COVERBOARD, PT=ETHTRK, PN=0, IP="126.126.126.1", MASK="255.255.255.0";
3.6.3.3.3 Using the CME It is recommended that parameters be configured along with the transmission data of the corresponding NE. For details, see Initial Configuration Guide of the corresponding NE.
3.6.3.4 Activation Observation Step 1 Run the DSP ETHTRK command to check the status of one Ethernet trunk. If Ethernet Trunk Status is Up and Number of Active Trunk Ports is not 0, the Ethernet link aggregation function is normal and there are active ports in the trunk. Step 2 Remove the optical fiber or Ethernet cable from one active port and run the DSP ETHTRK command to check the status of one Ethernet trunk again. The number of this port is not displayed in the result and the S1 interface is functional. Step 3 Run the DSP ETHTRKLNK command to check the status of the active ports port. Port Status is Down. Step 4 Reconnect the optical fiber or Ethernet cable to the port. Step 5 Run the DSP ETHTRK and DSP ETHTRKLNK commands. The port to which the optical fiber or Ethernet cable is reconnected becomes active. ----End
3.6.3.5 Deactivation 3.6.3.5.1 Using MML Commands Step 1 Run the RMV DEVIP to remove the device IP address. Step 2 Run the RMV ETHTRKLNK to remove the ports from the link aggregation group. The primary port is the last to be removed. Step 3 Run the RMV ETHTRK command to remove the link aggregation group. ----End
3.6.3.5.2 MML Command Examples //Deactivating link aggregation RMV DEVIP: SN=5, SBT=ETH_COVERBOARD, PT=ETHTRK, PN=0, IP="126.126.126.1"; RMV ETHTRKLNK: SN=5, SBT=ETH_COVERBOARD, TN=0, PN=1; RMV ETHTRKLNK: SN=5, SBT=ETH_COVERBOARD, TN=0, PN=0; RMV ETHTRK: SN=5, SBT=ETH_COVERBOARD, TN=0;
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
58
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.6.3.6 Reconfiguration If the attributes of a port in a link aggregation group become different from these of other ports in the link aggregation group, remove the port from the link aggregation group.
3.6.4 Performance Monitoring Run the DSP ETHTRK command to check whether the link aggregation group is functional. Run the DSP ETHTRKLNK command to check whether the links in the link aggregation group are functional.
3.6.5 Troubleshooting If ALM-25895 Ethernet Trunk Group Fault and ALM-25887 Ethernet Trunk Link Fault are reported, clear them by referring to the alarm handling suggestions.
3.7 OM Channel Backup Only the eNodeB, NodeB, eGBTS, and co-MPT base station support OM channel backup. NOTE
OM channel backup on the eGBTS uses Abis transmission backup enhancement (E1 backup). For details about Abis transmission backup enhancement, see Abis Transmission Backup Feature Parameter Description.
3.7.1 When to Use OM Channel Backup Enable OM channel backup on the base station side when hybrid transmission is used for high-QoS and low-QoS links, secure and non-secure links, and multi-RAT services of a coMPT multimode base station.
3.7.2 Planning 3.7.2.1 Network Planning Two IP addresses for the two OM channels must be planned on the base station side for different transmission links. NOTE
A NodeB using the IP protocol stack supports OM channel backup only in the following two scenarios: l IPoFE/IPoGE+IPoFE/IPoGE scenario: Both the active and standby OM channels use the IP over FE (IPoFE)/IP over GE (IPoGE) link. In this scenario, only the data carried on the active OM channel needs to be forwarded by the RNC. l Hybrid IP scenario: The active OM channel uses the IPoFE or IPoGE link and the standby OM channel uses the IP over E1 (IPoE1) link. In this scenario, the NodeB connects to the RNC over an end-to-end IPoE1 link.
3.7.2.2 Hardware Planning The UMPT/LMPT and UTRP boards of the 3900 series base stations support OM channel backup. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
59
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.7.3 Deployment 3.7.3.1 Requirements License No license is required for the eGBTS or NodeB. The operator must have purchased and activated the license for the features listed in the following table if the features are to be deployed for the eNodeB. Feature ID
Feature Name
License Control Item
NE
Sales Unit
LOFD-003005
OM Channel Backup
OM Channel Backup(FDD)
eNodeB
per eNodeB
TDLOFD-0030 05
OM Channel Backup
OM Channel Backup(TDD)
eNodeB
per eNodeB
Others The U2000 must be configured with the IP addresses of the master and slave OM channels and the bound routes.
3.7.3.2 Data Preparation NOTE
When OM channel backup is configured for a co-MPT multimode base station, ensure that NodeB IP_TRANS IP address and NodeB IP_TRANS backup IP address are configured the same in the OMCH MO on the base station side, UNODEBIP MO on the RNC side (co-MPT multimode base stations working in at least UMTS mode), and BTSOAMIP on the BSC side (co-MPT multimode base stations working in at least in eGBTS mode) for GSM, UMTS, and LTE.
Table 3-8 Data to prepare for OM channel backup on the base station side
Issue 01 (2017-03-15)
Parameter Name
Parameter ID
Setting Notes
Data Source
Standby Status
FLAG
Set this parameter to MASTER(Master) for the master OM channel and to SLAVE(Slave) for the slave OM channel.
Network plan
Local IP
IP
Set this parameter to the IP address of the master/slave OM channel.
Network plan
Local Mask
MASK
-
Network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
60
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Parameter Name
Parameter ID
Setting Notes
Data Source
Peer IP
PEERIP
Set this parameter to the IP address of the U2000.
Network plan
Peer Mask
PEERMASK
-
Network plan
Binding Route
BRT
Set this parameter to YES(Yes).
Network plan
Route Index
RTIDX
Set this parameter to the index of the route bound to the master OM channel.
Network plan
Binding Secondary Route
BINDSECONDARY RT
Set this parameter to YES(Yes) when the U2000 uses the remote HA system and the IP address of the standby U2000 is not within the network segment range of the route bound to the OM channel. Otherwise, set this parameter to NO(No).
Network plan
Secondary Route Index
SECONDARYRTIDX
This parameter is valid only if Binding Secondary Route is set to YES(Yes). Set this parameter to the index of the route to the standby U2000.
Network plan
If the OM channel backup needs to be enabled on the NodeB, the UNODEBIP MO also needs to be configured on the RNC side. If both the active and standby OM channels use the IPoFE or IPoGE link on the NodeB, the following parameters in the UNODEBIP MO need to be configured on the RNC side. For details, see Table 3-9. Table 3-9 UNODEBIP MO data preparation for OM channel backup on the RNC side (IPoFE/IPoGE+IPoFE/IPoGE)
Issue 01 (2017-03-15)
Parameter Name
Parameter ID
Setting Notes
Data Source
NodeB TransType
NBTRANTP
Set this parameter to IPTRANS_IP.
Network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
61
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Parameter Name
Parameter ID
Setting Notes
Data Source
NodeB IP_TRANS IP address
NBIPOAMIP
Set this parameter to the OM IP address of the active OM channel configured on the NodeB side.
Network plan
NodeB IP_TRANS IP Mask
NBIPOAMMASK
-
Network plan
NodeB IP_TRANS Subrack No.
IPSRN
Set this parameter to the number of the subrack where the interface board that forwards the NodeB OM link data is located if the RNC forwards the NodeB OM link data.
Network plan
If the RNC does not forward the NodeB OM link data, set this parameter to the number of a subrack that houses an interface board. NodeB IP_TRANS Slot No.
IPSN
Set this parameter to the number of the slot where the interface board that forwards the NodeB OM link data is located if the RNC forwards the NodeB OM link data.
Network plan
If the RNC does not forward the NodeB OM link data, set this parameter to the number of a slot that houses an interface board.
Issue 01 (2017-03-15)
NodeB IP_TRANS backup IP address
SLAVENBIPOAMIP
Set this parameter to the OM IP address of the standby OM channel configured on the NodeB side.
Network plan
NodeB IP_TRANS backup IP Mask
SLAVENBIPOAMM ASK
-
Network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
62
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
If the active OM channel uses the IPoFE or IPoGE link and the standby OM channel uses the IPoE1 link on the NodeB side, the following parameters in the UNODEBIP MO need to be configured on the RNC side. Table 3-10 UNODEBIP MO data preparation for OM channel backup on the RNC side (IPoFE/IPoGE+IPoE1) Parameter Name
Parameter ID
Setting Notes
Data Source
NodeB TransType
NBTRANTP
Set this parameter to HYBRID_IP_TRAN S.
Network plan
NodeB IP_TRANS IP address
NBIPOAMIP
Set this parameter to OM IP address of the active OM channel configured on the NodeB side, namely the OM IP address of the IPoFE link or IPoGE link.
Network plan
NodeB IP_TRANS IP Mask
NBIPOAMMASK
-
Network plan
NodeB IP_TRANS Subrack No.
IPSRN
Set this parameter to the number of the subrack where the interface board that forwards the NodeB OM link data is located if the RNC forwards the NodeB OM link data.
Network plan
If the RNC does not forward the NodeB OM link data, set this parameter to the number of a subrack that houses an interface board.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
63
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
Parameter Name
Parameter ID
Setting Notes
Data Source
NodeB IP_TRANS Slot No.
IPSN
Set this parameter to the number of the slot where the interface board that forwards the NodeB OM link data is located if the RNC forwards the NodeB OM link data.
Network plan
If the RNC does not forward the NodeB OM link data, set this parameter to the number of a slot that houses an interface board.
Issue 01 (2017-03-15)
NodeB IP over E1 OM IP Address
NBIPOE1OAMIP
Set this parameter to the OM IP address of the standby OM channel configured on the NodeB side, namely the OM IP address of the IPoE1 link.
Network plan
NodeB IP over E1 OM IP Mask
NBIPOE1OAMMAS K
-
Network plan
NodeB IP over E1 Subrack No.
IPOE1SRN
Set this parameter to the number of the subrack where the interface board that forwards the NodeB OM link data is located if the RNC forwards the NodeB OM link data over the IPoE1 link.
Network plan
NodeB IP over E1 Slot No.
IPOE1SN
Set this parameter to the number of the slot where the interface board that forwards the NodeB OM link data is located if the RNC forwards the NodeB OM link data over the IPoE1 link.
Network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
64
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.7.3.3 Activation 3.7.3.3.1 Using MML Commands
Procedure on the Base Station Side Step 1 Run the ADD OMCH command with Standby Status set to MASTER(Master), Local IP to the IP address of the master OM channel, Binding Route to YES(Yes), and Route Index to the index of the route bound to the master OM channel. In this step, if the U2000 uses the remote HA system and the IP address of the standby U2000 is not within the network segment range of the route bound to the master OM channel, set Binding Secondary Route to YES(Yes) and Secondary Route Index to the index of the route from the master OM channel to the standby U2000. Step 2 Run the ADD OMCH command with Standby Status set to SLAVE(Slave), Local IP to the IP address of the slave OM channel, Binding Route to YES(Yes), and Route Index to the index of the route bound to the slave OM channel. In this step, if the U2000 uses the remote HA system and the IP address of the standby U2000 is not within the network segment range of the route bound to the slave OM channel, set Binding Secondary Route to YES(Yes) and Secondary Route Index to the index of the route from the slave OM channel to the standby U2000. ----End
Procedure on the RNC Side Step 1 (Optional) If both the active and standby OM channels use the IPoFE or IPoGE link, run the ADD UNODEBIP command with NodeB TransType set to IPTRANS_IP_IP(IPTRANS_IP), NodeB IP_TRANS IP address to the IP address of the master OM channel configured on the NodeB side, and NodeB IP_TRANS backup IP address to the IP address of the slave OM channel configured on the NodeB side. Step 2 (Optional) If the active OM channel uses the IPoFE or IPoGE link and the standby OM channel uses the IPoE1 link, run the ADD UNODEBIP command with NodeB TransType set to ATMANDIPTRANS_IP(ATMANDIPTRANS_IP), NodeB IP_TRANS IP address to the IP address of the active OM channel configured on the NodeB side, and NodeB IP_TRANS IP address over IPoE1 to the IP address of the standby OM channel configured on the NodeB side. ----End
3.7.3.3.2 MML Command Examples //Activating OM channel backup when the U2000 does not use the remote HA system ADD IPRT: RTIDX=0, SN=7, SBT=BASE_BOARD, DSTIP="100.100.100.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.10.12.2"; ADD IPRT: RTIDX=1, SN=7, SBT=BASE_BOARD, DSTIP="100.100.100.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.10.13.2"; ADD OMCH: FLAG=MASTER, IP="10.10.10.1", MASK="255.255.255.255", PEERIP="100.100.100.1", PEERMASK="255.255.255.0", BEAR=IPV4, BRT=YES, RTIDX=0, BINDSECONDARYRT=NO, CHECKTYPE=NONE; ADD OMCH: FLAG=SLAVE, IP="10.10.11.1", MASK="255.255.255.255", PEERIP="100.100.100.1", PEERMASK="255.255.255.0", BEAR=IPV4, BRT=YES, RTIDX=1, BINDSECONDARYRT=NO, CHECKTYPE=NONE; //Activating OM channel backup when the U2000 uses the remote HA system
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
65
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
ADD IPRT: RTIDX=0, SN=7, SBT=BASE_BOARD, DSTIP="100.100.100.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.10.12.2"; ADD IPRT: RTIDX=1, SN=7, SBT=BASE_BOARD, DSTIP="100.100.100.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.10.13.2"; ADD IPRT: RTIDX=2, SN=7, SBT=BASE_BOARD, DSTIP="100.100.200.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.10.12.2"; ADD IPRT: RTIDX=3, SN=7, SBT=BASE_BOARD, DSTIP="100.100.200.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.10.13.2"; ADD OMCH: FLAG=MASTER, IP="10.10.10.1", MASK="255.255.255.255", PEERIP="100.100.100.1", PEERMASK="255.255.255.0", BEAR=IPV4, BRT=YES, RTIDX=0, BINDSECONDARYRT=YES, SECONDARYRTIDX=2, CHECKTYPE=NONE; ADD OMCH: FLAG=SLAVE, IP="10.10.11.1", MASK="255.255.255.255", PEERIP="100.100.100.1", PEERMASK="255.255.255.0", BEAR=IPV4, BRT=YES, RTIDX=1, BINDSECONDARYRT=YES, SECONDARYRTIDX=3, CHECKTYPE=NONE; //(Optional)If both the active and standby OM channels configured on the NodeB side use the IPoFE or IPoGE link ADD UNODEBIP: IDTYPE=BYID, NODEBID=1, NBTRANTP=IPTRANS_IP, NBIPOAMIP="10.10.10.1", NBIPOAMMASK="255.255.255.255", IPSRN=0, IPSN=11, VLANFLAG=DISABLE, SLAVENBIPOAMIP="10.10.11.1",SLAVENBIPOAMMASK="255.255.255.255"; //(Optional) If the active OM channel uses IPoFE or IPoGE link and the standby OM channel uses the IPoE1 link on the NodeB side ADD UNODEBIP: IDTYPE=BYID, NODEBID=1, NBTRANTP=HYBRID_IP_TRANS, NBIPOAMIP="10.10.10.1", NBIPOAMMASK="255.255.255.255", IPSRN=0, IPSN=11, IPLOGPORTFLAG=NO, VLANFLAG=DISABLE, NBIPOE1OAMIP="10.10.11.1", NBIPOE1OAMMASK="255.255.255.255", IPOE1SRN=0, IPOE1SN=20;
3.7.3.3.3 Using the CME It is recommended that parameters be configured along with the transmission data of the corresponding NE. For details, see Initial Configuration Guide of the corresponding NE.
3.7.3.4 Activation Observation This section is based on two networking assumptions: l
The local IP addresses of the master and slave OM channels belong to different network segments.
l
The next-hop IP addresses of the IP routes bound to the master and slave OM channels are different.
Although fault the actual networking mode is different from the assumptions, the verification can proceed as long as a fault can be generated on the OM channel that is in use to trigger an OM channel switchover and the other OM channel is working normally. To check whether OM channel backup has taken effect, perform the following steps: Step 1 Check which channel is the active OM channel. Run the DSP OMCH command to query the status of the master and slave OM channels. An OM channel is active if its OM Channel Status is Normal and Used State is In Use. Step 2 Trigger an OM channel switchover. Generate a transport link fault for the active OM channel and verify that the standby OM channel can take over the active OM channel. l
Issue 01 (2017-03-15)
If the active OM channel is the master channel, generate a route fault for the master OM channel. Wait about 10 minutes and run the DSP OMCH command to check the status of the slave OM channel. The switchover is successful if OM Channel Status is Normal and Used State is In Use. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
66
GSM BSS IP BSS Engineering Guide Feature Parameter Description
l
3 Engineering Guidelines for Transmission Reliability
If the active OM channel is the slave channel, generate a route fault for the slave OM channel. Wait about 10 minutes and run the DSP OMCH command to check the status of the master OM channel. The switchover is successful if OM Channel Status is Normal and Used State is In Use.
Step 3 Restore the faulty OM channel. ----End
3.7.3.5 Deactivation 3.7.3.5.1 Using MML Commands
Procedure on the Base Station Side Run the RMV OMCH command with Standby Status set to SLAVE(Slave) to remove the slave OM channel.
Procedure on the RNC Side Step 1 Run the RMV UNODEBIP command to remove the active and standby OM channels that connect to the NodeB. Step 2 Run the ADD UNODEBIP command to reestablish an OM channel that does not work in active/standby mode to connect to the NodeB. ----End
3.7.3.5.2 MML Command Examples //Removing the slave OM channel RMV OMCH: FLAG=SLAVE; //Removing both the active and standby OM channels that connect to the NodeB RMV UNODEBIP: IDTYPE=BYID, NODEBID=1; ADD UNODEBIP: IDTYPE=BYID, NODEBID=1, NBTRANTP=IPTRANS_IP, NBIPOAMIP="10.10.10.1", NBIPOAMMASK="255.255.255.255", IPSRN=0, IPSN=11, VLANFLAG=DISABLE;
3.7.3.6 Reconfiguration If OM channel backup needs to be reconfigured, run the MOD OMCH command on the base station side. If OM channel backup needs to be reconfigured on the NodeB, run the MOD UNODEBIP command to perform the reconfiguration on the RNC side after the reconfiguration is complete on the base station side.
3.7.4 Performance Monitoring Run the DSP OMCH command on the base station side to query the status of the master and slave OM channels.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
67
GSM BSS IP BSS Engineering Guide Feature Parameter Description
3 Engineering Guidelines for Transmission Reliability
3.7.5 Troubleshooting If ALM-25901 Remote Maintenance Link Failure is reported, clear the alarm by referring to the alarm handling suggestions.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
68
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4
4 Engineering Guidelines for Transmission Maintenance and Detection
Engineering Guidelines for Transmission Maintenance and Detection
4.1 BFD 4.1.1 When to Use BFD Enable BFD only when BFD is required for quick fault location in IP transmission scenarios. BFD consumes CPU resources and transmission bandwidth, which will affect network performance. For regions and operators with high security requirements, enable the single-hop BFD authentication function. The peer gateway must support BFD authentication.
4.1.2 Planning 4.1.2.1 Network Planning N/A
4.1.2.2 Hardware Planning l
The BSC6900 must be configured with the FG2a/FG2c/FG2e or GOUa/GOUc boards to support BFD.
l
The BSC6910 must be configured with the FG2c/FG2e, GOUc, or EXOUa/EXOUb boards to support BFD.
l
The BTS3900 must be configured with the WMPT/LMPT/UMPT/UMDU/GTMUc/ UCCU/UTRPc board to support BFD.
l
The BTS3900 must be configured with the UMPT/UMDU/GTMUc/LMPT/UTRPc board to support BFD authentication.
4.1.3 Deployment Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
69
4 Engineering Guidelines for Transmission Maintenance and Detection
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4.1.3.1 Requirements NEs The peer device supports BFD. If BFD authentication is enabled on the local device, it must be supported on the peer device.
Operating environment Ethernet ports are available on the UCCU, LMPT or UMPT of the eNodeB.
License No license is required for the eGBTS or NodeB. The operator must have purchased and activated the license for the features listed in the following table if the features are to be deployed for the eNodeB. Feature ID
Feature Name
Model
License Control Item
NE
Sales Unit
LOFD-003007
Bidirectional Forwarding Detection
LT1S000 BFD00
Bidirection al Forwarding Detection
eNodeB
per eNodeB
TDLOFD-003 007
Bidirectional Forwarding Detection
LT1ST00 BFD00
Bidirection al Forwarding Detection
eNodeB
per eNodeB
4.1.3.2 Data Preparation Table 4-1, Table 4-2, and Table 4-3 list the data to prepare before activating BFD. Table 4-1 Data to prepare before activating BFD on the base station controller
Issue 01 (2017-03-15)
Parameter Name
Parameter ID
Setting Notes
Data Source
Check type
CHKTYPE(BSC691 0,BSC6900)
N/A
Transport network plan
Carry port type
CARRYT(BSC6910, BSC6900)
N/A
Transport network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
70
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
Check mode
MODE(BSC6910,B SC6900)
When Check type is set to SBFD and Carry port type is set to ETHPORT, set this parameter to CHECK_ON_IND EPENDENT_POR T or CHECK_ON_PRI MARY_PORT.
Transport network plan
When Check type is set to SBFD and Carry port type is set to TRUNK, you do not need to set this parameter but to enter the IP address to be checked. When Check type is set to MBFD, you do not need to set this parameter but to enter the IP address to be checked.
Issue 01 (2017-03-15)
Multi hop BFD detect local ip
MBFDLOCALIP(B SC6910,BSC6900)
N/A
Transport network plan
My discriminator of BFD
MYDISCRIMINAT OR(BSC6910,BSC6 900)
N/A
Transport network plan
Min interval of BFD packet send [ms]
MINTXINT(BSC69 10,BSC6900)
N/A
Transport network plan
Min interval of BFD packet receive [ms]
MINRXINT(BSC69 10,BSC6900)
N/A
Transport network plan
Detect multiplier of BFD packet
BFDDETECTCOU NT(BSC6910,BSC6 900)
N/A
Transport network plan
Route associated flag
ROUTEASSOCIAT EDFLAG(BSC6910 ,BSC6900)
This parameter is valid only when Check type in STR IPCHK is set to SBFD.
Transport network plan
Differentiated services code point
DSCP(BSC6910,BS C6900)
N/A
Transport network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
71
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
Route Switchover Delay[s]
ROUTESWITCHO VERDELAY(BSC6 910,BSC6900)
This parameter is valid only when Check type in STR IPCHK is set to SBFD and Route associated flag is set to YES.
Transport network plan
If active and standby routes are configured, set this parameter to the route convergence time of the router.
Table 4-2 Data to prepare before activating BFD on the GBTS Parameter Name
Parameter ID
Setting Notes
Data Source
Hop Type
HT(BSC6910,BSC6 900)
l SBFD sessions are used for point-to-point checks in Layer 2 networking.
Transport network plan
l MBFD sessions are used for endto-end continuity checks in Layer 3 networking.
Issue 01 (2017-03-15)
Source IP Address
SRCIP(BSC6910,B SC6900)
N/A
Transport network plan
Destination IP Address
DSTIP(BSC6910,B SC6900)
N/A
Transport network plan
Time for Waiting to Restore
BTSWTR(BSC6910 ,BSC6900)
Set this parameter to 3.
Transport network plan
Minimum TX Interval
MINTXINTERVA L(BSC6910,BSC69 00)
Set this parameter to 100.
Transport network plan
Minimum RX Interval
MINRXINTERVA L(BSC6910,BSC69 00)
Set this parameter to 100.
Transport network plan
Detect Period
DETECTMULT(BS C6910,BSC6900)
Set this parameter to 3.
Transport network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
72
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
DSCP
DSCP(BSC6910,BS C6900)
N/A
Transport network plan
Table 4-3 Data to prepare before activating BFD on the eGBTS/NodeB/eNodeB Parameter Name
Parameter ID
Setting Notes
Data Source
Hop Type
HT
l SBFD sessions are used for point-to-point checks in Layer 2 networking.
Transport network plan
l MBFD sessions are used for endto-end continuity checks in Layer 3 networking.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
73
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
Source IP
SRCIP
This parameter specifies the source IP address of the BFD session. Set this parameter based on the network plan.
Transport network plan
A BFD session cannot be configured as a single-hop session if its source IP address is a logical IP address. Ensure that the source IP address has been configured in the associated DEVIP MO. This parameter must be set to a valid IP address and cannot be set to 0.0.0.0. It must be a device IP address of a specified board (for example, the IP address of an Ethernet port) or a logical IP address (for example, the IP address of a loopback interface), but cannot be the IP address of the OM channel. This parameter must be set to a value different from that of the BFDSESSION.DST IP parameter.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
74
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
Destination IP
DSTIP
This parameter specifies the destination IP address of the BFD session. Set this parameter based on the network plan.
Transport network plan
If the hop type is single-hop and the source IP port is an Ethernet port in the BFD session to be added, the source and destination IP addresses must be on the same network segment. If a BFD session with Hop Type set to SINGLE_HOP and Session Catalog set to RELIABILITY is inactive, the route with the next-hop IP address set to the destination IP address of the BFD session will be disabled. If the BFD session is active, the route with the nexthop IP address set to the destination IP address of the BFD session will be enabled. The destination IP address of each BFD session must be unique.
Issue 01 (2017-03-15)
Min TX Interval
MINTI
Set this parameter to 100.
Transport network plan
Min RX Interval
MINRI
Set this parameter to 100.
Transport network plan
Detection Multiplier
DM
Set this parameter to 3.
Transport network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
75
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
Session Catalog
CATLOG
Set this parameter based on the network plan.
Transport network plan
l If this parameter is set to MAINTENANC E(Maintenance) , the BFD session is used only for continuity checks. l If this parameter is set to RELIABILITY( Reliability), the BFD session is used to trigger route interlock. When a route is faulty, a standby route takes over to prevent link interruption caused by the route failure. DSCP
DSCP
N/A
Transport network plan
BFD Authentication Switch
BFDAUTHSW
Set this parameter based on the network plan.
Transport network plan
l You are advised to enable BFD authentication if you have high security requirements for BFD control packets. l Otherwise, you are advised to disable BFD authentication.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
76
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
BFD Authentication Algorithm
BFDAUTHTYPE
Set this parameter based on the network plan. The following algorithms are supported:
Transport network plan
l MD5(MD5) l Meticulous MD5(MeMD5) l SHA1(SHA1) l Meticulous SHA1(MeSHA1) The algorithm must be consistent between the base station and the peer device.
Issue 01 (2017-03-15)
BFD Authentication Key Chain ID
KEYCHAINID
Set this parameter to the same value as that of KEYCHAINID.
Internal planning
BFD Authentication Key Chain ID
KEYCHAINID
This parameter does not need to be negotiated with the peer end. Currently, only one key chain can be configured.
Internal planning
Key Chain Description
KEYCHAINDESC
This parameter does not need to be negotiated with the peer end. Currently, only one key chain is supported.
Internal planning
BFD Authentication Key Chain ID
KEYCHAINID
Set this parameter to the same value as that of KEYCHAINID.
Internal planning
KEY Identity
KEYID
Set this parameter based on the network plan. The algorithm must be consistent between the base station and the peer device.
Transport network plan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
77
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Parameter Name
Parameter ID
Setting Notes
Data Source
KEY String
KEY
Set this parameter based on the network plan. The algorithm must be consistent between the base station and the peer device.
Transport network plan
4.1.3.3 Precautions Currently, the RNC only supports SBFD on the active port in asynchronous mode. It does not support simultaneous SBFD on the active and standby ports. If a running SBFD session fails, the base station or base station controller automatically disables the routes whose next-hop IP address is the peer IP address of the failed SBFD session. If SBFD is configured only for the active port on the base station controller and the Whether affect the port swapping (IPCHK:WHETHERAFFECTSWAP) parameter is set to YES(YES), an SBFD link fault triggers a port switchover. Otherwise, an SBFD link fault does not trigger a port switchover, but the availability of the related routes is affected. The BFD on the base station cannot determine whether the link disconnection or incorrect BFD configuration leads to a BFD interruption. l
If the BFD is bound with a route, a link fault may result in a route switchover.
l
If BFD authentication is enabled, a link fault due to authentication failure may result in a route switchover.
4.1.3.4 Activation 4.1.3.4.1 Using MML Commands
On the Base Station Controller NOTE
Before activating BFD, ensure that the IP path has been correctly configured based on the network plan. The BSC6910 does not support the configuration of IP paths. Therefore, the BFD cannot be bound with an IP path or IP route on the BSC6910.
Step 1 Run the SET BFDPROTOSW command with BFD Protocol Switch set to BFD_ON to activate BFD. Step 2 Run the STR IPCHK command with Check type set to SBFD or MBFD to start the continuity check. Step 3 (Optional) Run the ADD IPPATHBIND command with IP path ID set to the ID of the IP path to be checked to bind the BFD with the IP path. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
78
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Step 4 (Optional) Bind the BFD with the IP route by running the ADD IPRTBIND command with Destination IP address and Forward route address set to the destination IP address and next hop IP address to be checked, respectively. ----End
On the eGBTS/NodeB/eNodeB Run the ADD BFDSESSION command with Hop Type set to SINGLE_HOP and Session Catalog set to RELIABILITY.
On the GBTS Run the ADD BTSBFD command to configure the required parameters.
4.1.3.4.2 MML Command Examples
On the Base Station Controller //Starting the SBFD on Ethernet port 0 on the FG2a board in slot 26 of subrack 5 (Check mode = CHECK_ON_PRIMARY_PORT; Peer IP address = 99.9.9.100; Min interval of BFD packet receive [ms] = 50 ms; Min interval of BFD packet send [ms] = 50 ms; ARP packet time-out = 5) SET BFDPROTOSW: SRN=0, SN=26, SWITCH=BFD_ON; STR IPCHK: SRN=5, SN=26, CHKTYPE=SBFD, CARRYT=ETHPORT, PN=0, PEERIP="10.10.14.1", MINTXINT=50, MINRXINT=50, BFDDETECTCOUNT=5; ADD IPPATHBIND: ANI=0, PATHID=0, SRN=0, SN=24, CHKN=1; ADD IPRTBIND: SRN=0, SN=26, DESTIP="10.10.10.1", MASK="255.255.255.255", NEXTHOP="5.5.5.5", MBFDCHKN=0;
On the eGBTS/NodeB/eNodeB //Adding a BFD authentication key chain (BFD Authentication Key Chain ID = 0, Key Chain Description = bfdkeychain) ADD BFDKEYCHAIN: KEYCHAINID=0, KEYCHAINDESC="bfdkeychain"; //Adding a key to the BFD key chain (BFD Authentication Key Chain ID = 0, KEY Identity = 0, KEY String = 123) ADD BFDKEY: KEYCHAINID=0, KEYID=0, KEY="*****"; //Adding a BFD session (Cabinet No. = 0, Subrack No. = 0, Slot No. = 6, Session ID = 0, Source IP = 192.168.5.5, Destination IP = 192.168.5.6, Hop Type = SINGLE_HOP, Session Catalog = RELIABILITY, DSCP = 0, Protocol Version: STANDARD, BFD Authentication Switch = ON, BFD Authentication Algorithm = SHA1, BFD Authentication Key Chain ID = 0) ADD BFDSESSION: CN=0, SRN=0, SN=6, BFDSN=0, SRCIP="192.168.5.5", DSTIP="192.168.5.6", HT=SINGLE_HOP, CATLOG=RELIABILITY, DSCP=0, VER=STANDARD,BFDAUTHSW=ON,BFDAUTHTYPE=SHA1,KEYCHAINID=0;
On the GBTS ADD BTSBFD: IDTYPE=BYID, BTSID=0, CN=0, SRN=0, SN=6, BFDSN=1, SRCIP="10.161.30.1", DSTIP="10.161.40.1", HT=SBFD, BTSWTR=1024, MINTXINTERVAL=800, MINRXINTERVAL=800, DETECTMULT=8;
4.1.3.5 Activation Observation The procedure of verifying SBFD and MBFD is the same. Step 1 Enable BFD-based IP fault detection. If BFD fails, ALM-21346 IP Connectivity Check Failure is reported. Step 2 Run the DSP IPCHK command on the RNC side to query gateway check parameter and status. Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
79
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Step 3 Run the DSP BFDSESSION command on the NodeB side to query the status of a BFD session. If Session State is Up, the feature is activated. ----End
4.1.3.6 Deactivation 4.1.3.6.1 Using MML Commands
On the Base Station Controller Side Run the STP IPCHK command to stop the connectivity check of the gateway on FE/GE ports.
On the eGBTS/NodeB/eNodeB Side Run the RMV BFDSESSION command to remove a BFD session.
On the GBTS Side Run the RMV BTSBFD command to remove a BFD session.
4.1.3.6.2 MML Command Examples
On the Base Station Controller Side //Stopping a connectivity check STP IPCHK: SRN=5, SN=26, CHKN=0;
On the eGBTS/NodeB/eNodeB Side //Removing a BFD session RMV BFDSESSION: CN=0, SRN=0, SN=0, BFDSN=0;
On the GBTS Side //Removing a BFD session RMV BTSBFD: IDTYPE=BYID, BTSID=0, CN=0, SRN=0, SN=6, BFDSN=1;
4.1.4 Performance Monitoring Procedure on the base station controller side Step 1 Run the DSP IPCHK command to query gateway connectivity check parameter and status. ----End Procedure on the base station side Step 1 Run the DSP BFDSESSION command to query the status of the BFD session. ----End Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
80
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
4.1.5 Parameter Optimization l
Procedure on the base station controller side Run the STR IPCHK command to change the settings of the MINTXINT, MINRXINT, and BFDDETECTCOUNT, if required.
l
–
If BFD packets are sent at a too high frequency, excessive transmission bandwidth is required, which affects the performance of the peer equipment. In this case, you are advised to increase the value of the MINTXINT parameter (negotiation with the customer is required).
–
If BFD packets are sent at a too low frequency, detection results are less accurate. In this case, you are advised to decrease the value of the MINTXINT parameter (negotiation with the customer is required).
–
If fault detection sensitivity is too high on the peer end, ping-pong effect will arise. In this case, you are advised to increase the value of the MINRXINT and BFDDETECTCOUNT parameters (negotiation with the customer is required).
–
If fault detection sensitivity is too low on the peer end, it will take too much time to detect a fault. In this case, you are advised to decrease the value of the MINRXINT and BFDDETECTCOUNT parameters (negotiation with the customer is required).
Procedure on the base station side Run the MOD BFDSESSION command to change the value of the MINTI, MINRI, and DM parameters, if required. –
If BFD packets are sent at a too high frequency, excessive bandwidth is required, which will affect the performance of the peer equipment. In this case, increase the value of the MINTI parameter (negotiation with the customer is required).
–
If BFD packets are sent at a too low frequency, detection results are less accurate. In this case, you are advised to decrease the value of the MINTI parameter (negotiation with the customer is required).
–
If fault detection sensitivity is too high on the peer end, ping-pong effect will arise. In this case, you are advised to increase the value of the MINRI and DM parameters (negotiation with the customer is required).
–
If fault detection sensitivity is too low on the peer end, it will take too much time to detect a fault. In this case, you are advised to decrease the value of the MINRI and DM parameters (negotiation with the customer is required).
4.1.6 Troubleshooting The ALM-21346 IP Connectivity Check Failure is reported if the BFD fails.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
81
GSM BSS IP BSS Engineering Guide Feature Parameter Description
4 Engineering Guidelines for Transmission Maintenance and Detection
Table 4-4 Alarm related to BFD sessions Alarm ID
Alarm Name
NE
Feature ID
Feature Name
ALM-21346
IP Connectivity Check Failure
RNC
WRFD-050409
IP Transmission Introduction on Iu Interface
WRFD-050403 WRFD-050410
IP Transmission Introduction on Iub Interface IP Transmission Introduction on Iur Interface
If a BFD session on an eNodeB is faulty, check whether an alarm listed in Table 4-5 is generated on the eNodeB. If an alarm is generated, clear the alarm by referring to the related alarm reference. Table 4-5 Alarm related to BFD sessions
Issue 01 (2017-03-15)
Alarm ID
Alarm Name
Severity
25899
BFD Session Fault
Minor
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
82
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
5
Parameters
Table 5-1 Parameters Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
NEXTH OP
BSC691 0
ADD IPRT
GBFD-1 18601
Abis over IP
Meaning: IP address of the next hop.
MOD IPRT
GBFD-1 50201
Unit: None
RMV IPRT
GBFD-1 18621
A over IP Based on Dynami c Load Balancin g
GUI Value Range: Valid IP Address Actual Value Range: Valid IP Address Default Value: None
Connect ion Inter BSC over IP NEXTH OP
BSC690 0
ADD IPRT
None
None
GUI Value Range: Valid IP Address
MOD IPRT
Unit: None Actual Value Range: Valid IP Address
RMV IPRT PRIOR ITY
BSC691 0
ADD IPRT
Meaning: IP address of the next hop.
Default Value: None None
None
Meaning: Route priority. GUI Value Range: HIGH, LOW Unit: None Actual Value Range: HIGH, LOW Default Value: None
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
83
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
PRIOR ITY
BSC690 0
ADD IPRT
GBFD-1 18601
Abis over IP
Meaning: Route priority.
GBFD-1 18602
A over IP
Unit: None
GBFD-1 18621
Connect ion Inter BSC over IP
GBFD-1 18611
GUI Value Range: HIGH, LOW Actual Value Range: HIGH, LOW Default Value: None
Abis IP over E1/T1 NEXTH OP
BSC691 0
ADD SRCIP RT MOD SRCIP RT
GBFD-1 18601
Abis over IP
Meaning: IP address of the next hop.
GBFD-1 50201
A over IP Based on Dynami c Load Balancin g
Unit: None
GBFD-1 18621
GUI Value Range: Valid IP Address Actual Value Range: Valid IP Address Default Value: None
Connect ion Inter BSC over IP NEXTH OP
BSC690 0
ADD SRCIP RT MOD SRCIP RT
Issue 01 (2017-03-15)
None
None
Meaning: IP address of the next hop. GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
84
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
STAND BYNEX THOP
BSC691 0
ADD SRCIP RT
GBFD-1 18601
Abis over IP
GBFD-1 50201
A over IP Based on Dynami c Load Balancin g
Meaning: Standby next-hop IP address. This parameter can be configured when IPTYPE is set to DEVIP. When the active next-hop IP address is inaccessible, the policy-based route uses the standby next-hop IP address.
MOD SRCIP RT
GBFD-1 18621
GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
Connect ion Inter BSC over IP STAND BYNEX THOP
BSC690 0
ADD SRCIP RT
GBFD-1 18631
MOD SRCIP RT
A Interface Transmi ssion Pool
Meaning: Standby next-hop IP address. This parameter can be configured when IPTYPE is set to DEVIP. When the active next-hop IP address is inaccessible, the policy-based route uses the standby next-hop IP address. GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
NEXTH OP
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD IPRT
WRFD050402
MOD IPRT
WRFD050107
DSP IPRT
GBFD-1 18601
LST IPRT
GBFD-1 18611 LBFD-0 03007 / MLBFD -120003 08
IP Transmi ssion Introduc tion on Iub Interface
Meaning: Indicates the IP address of the next hop. GUI Value Range: Valid IP address Unit: None Actual Value Range: Valid IP address Default Value: 0.0.0.0
IP routing Based Hub Node B Abis over IP Abis IP over E1/T1 IP Route Backup
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
85
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
PREF
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD IPRT
WRFD050402
MOD IPRT
WRFD050107
Meaning: Indicates the priority of the routing table entry. A smaller parameter value indicates a higher priority.
DSP IPRT
GBFD-1 18601
IP Transmi ssion Introduc tion on Iub Interface
LST IPRT
GBFD-1 18611
IP routing Based Hub Node B
Default Value: 60
LBFD-0 03007 / MLBFD -120003 08
GUI Value Range: 1~255 Unit: None Actual Value Range: 1~255
Abis over IP Abis IP over E1/T1 IP Route Backup
PRI
BSC691 0
ADD BTSIP RT
GBFD-1 18601
Abis over IP
MOD BTSIP RT
Meaning: Priority of a route. When the parameter value ranges from 1 to 255, a small value of this parameter indicates a high priority. The BTS preferentially selects a route with a high priority to transfer information. Setting this parameter to 0 has the same effect as setting this parameter to its default value 60. GUI Value Range: 0~255 Unit: None Actual Value Range: 0~255 Default Value: 60
PRI
BSC690 0
ADD BTSIP RT MOD BTSIP RT
GBFD-1 18601
Abis over IP
Meaning: Priority of a route. When the parameter value ranges from 1 to 255, a small value of this parameter indicates a high priority. The BTS preferentially selects a route with a high priority to transfer information. Setting this parameter to 0 has the same effect as setting this parameter to its default value 60. GUI Value Range: 0~255 Unit: None Actual Value Range: 0~255 Default Value: 60
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
86
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
NEXTH OP
BSC691 0
ADD BTSIP RT
GBFD-1 18611
Abis IP over E1/T1
Meaning: IP address of the next hop
MOD BTSIP RT NEXTH OP
BSC690 0
ADD BTSIP RT
BSC691 0
ADD ETHTR K
Unit: None Actual Value Range: Valid IP Address Default Value: None
GBFD-1 18611
Abis IP over E1/T1
MOD BTSIP RT WORK MODE
GUI Value Range: Valid IP Address
Meaning: IP address of the next hop GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
None
None
Meaning: Trunk group working mode. GUI Value Range: LOAD_SHARING(Load sharing), ACTIVE_STANDBY(Active standby) Unit: None Actual Value Range: LOAD_SHARING, ACTIVE_STANDBY Default Value: LOAD_SHARING(Load sharing)
WORK MODE
BSC690 0
ADD ETHTR K
MRFD210103
Link aggregat ion
Meaning: Trunk group working mode. GUI Value Range: LOAD_SHARING(Load sharing), ACTIVE_STANDBY(Active standby) Unit: None Actual Value Range: LOAD_SHARING, ACTIVE_STANDBY Default Value: LOAD_SHARING(Load sharing)
LACP MODE
BSC691 0
ADD ETHTR K
None
None
Meaning: Aggregation mode. When this parameter is set to static aggregation, the LACP protocol is activated; otherwise, the LACP protocol is deactivated. GUI Value Range: STATIC_LACP, MANUAL_AGGREGATION Unit: None Actual Value Range: STATIC_LACP, MANUAL_AGGREGATION Default Value: None
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
87
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
LACP MODE
BSC690 0
ADD ETHTR K
MRFD210103
Link aggregat ion
Meaning: Aggregation mode. When this parameter is set to static aggregation, the LACP protocol is activated; otherwise, the LACP protocol is deactivated. GUI Value Range: STATIC_LACP, MANUAL_AGGREGATION Unit: None Actual Value Range: STATIC_LACP, MANUAL_AGGREGATION Default Value: None
RT
BSC691 0
ADD ETHTR K
None
None
Meaning: Recovery mode of the trunk group. The non-revertive switching of trunks working in active/ standby mode is either of the following: 1. When the high-priority port is restored, no switchback is performed if the current active port works normally. 2. When the high-priority port is restored, the priority of the port is set to the lowest to prevent a switchback if the current active port works normally. Currently, the BSC adopts the first mode. If the equipment interconnecting with the BSC adopts the second mode, the equipment must work as the initiative. Otherwise, the non-revertive switching does not take effect. GUI Value Range: NON-REVERTIVE(NONREVERTIVE), REVERTIVE(REVERTIVE) Unit: None Actual Value Range: NON-REVERTIVE, REVERTIVE Default Value: NON-REVERTIVE(NONREVERTIVE)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
88
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
RT
BSC690 0
ADD ETHTR K
MRFD210103
Link aggregat ion
Meaning: Recovery mode of the trunk group. The non-revertive switching of trunks working in active/ standby mode is either of the following: 1. When the high-priority port is restored, no switchback is performed if the current active port works normally. 2. When the high-priority port is restored, the priority of the port is set to the lowest to prevent a switchback if the current active port works normally. Currently, the BSC adopts the first mode. If the equipment interconnecting with the BSC adopts the second mode, the equipment must work as the initiative. Otherwise, the non-revertive switching does not take effect. GUI Value Range: NON-REVERTIVE(NONREVERTIVE), REVERTIVE(REVERTIVE) Unit: None Actual Value Range: NON-REVERTIVE, REVERTIVE Default Value: NON-REVERTIVE(NONREVERTIVE)
SYSPRI
BSC691 0
ADD ETHTR K
None
None
Meaning: Trunk group system priority. For the trunks working in active/standby mode, the priority of the local trunk must be different from the priority of the peer trunk. For details about this parameter, see IEEE 802.3ad protocol. GUI Value Range: 0~65535 Unit: None Actual Value Range: 0~65535 Default Value: 100
SYSPRI
BSC690 0
ADD ETHTR K
MRFD210103
Link aggregat ion
Meaning: Trunk group system priority. For the trunks working in active/standby mode, the priority of the local trunk must be different from the priority of the peer trunk. For details about this parameter, see IEEE 802.3ad protocol. GUI Value Range: 0~65535 Unit: None Actual Value Range: 0~65535 Default Value: 100
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
89
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
LACP
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD ETHTR K
MRFD210103
Link aggregat ion
Meaning: Indicates the type of Ethernet trunk. If this parameter is set to DISABLE, the trunk's status can not be notified to the other end, member ports of the Ethernet trunk must be manually configured. In this case, the configured member ports are considered as valid member ports of the Ethernet trunk. If this parameter is set to ENABLE, member ports of the Ethernet trunk must also be manually configured. In this case, the valid member ports of the Ethernet trunk are negotiated between the BS and the peer end according to LACP.
MOD ETHTR K DSP DHCPR SLT
LOFD-0 03008 / TDLOF D-00300 8
Ethernet Link Aggrega tion(IEE E 802.3ad)
DSP ETHTR K
GUI Value Range: DISABLE(Disable LACP), ENABLE(Enable LACP)
LST ETHTR K
Unit: None Actual Value Range: DISABLE, ENABLE Default Value: ENABLE(Enable LACP)
FLAG
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
WRFD050404
DSP OMCH
LBFD-0 04002 / TDLBF D-00400 2
MOD OMCH RMV OMCH LST OMCH
ATM/IP Dual Stack Node B
Meaning: Indicates the master/slave flag of the remote maintenance channel.
Actual Value Range: MASTER, SLAVE
LOFD-0 03005
Centrali zed U2000 Manage ment
GBFD-1 18601
OM Channel Backup
GBFD-1 18611
GUI Value Range: MASTER(Master), SLAVE(Slave) Unit: None Default Value: None
Abis over IP Abis IP over E1/T1
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
90
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
IP
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
WRFD050402
Meaning: Indicates the local IP address of a remote maintenance channel.
MOD OMCH
LBFD-0 04002 / TDLBF D-00400 2
IP Transmi ssion Introduc tion on Iub Interface
DSP OMCH LST OMCH
LOFD-0 03005 GBFD-1 18601 GBFD-1 18611
GUI Value Range: Valid IP address Unit: None Actual Value Range: Valid IP address Default Value: None
Centrali zed U2000 Manage ment OM Channel Backup Abis over IP Abis IP over E1/T1
MASK
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
WRFD050402
MOD OMCH
LBFD-0 04002 / TDLBF D-00400 2
DSP OMCH LST OMCH
LOFD-0 03005 GBFD-1 18601 GBFD-1 18611
IP Transmi ssion Introduc tion on Iub Interface
Meaning: Indicates the local subnet mask of a remote maintenance channel. GUI Value Range: Valid subnet mask Unit: None Actual Value Range: Valid subnet mask Default Value: None
Centrali zed U2000 Manage ment OM Channel Backup Abis over IP Abis IP over E1/T1
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
91
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
PEERI P
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
WRFD050404
MOD OMCH
LBFD-0 04002 / TDLBF D-00400 2
ATM/IP Dual Stack Node B
Meaning: Indicates the peer IP address of the remote maintenance channel. Indicates the IP address of the U2000 in an IP network and the device IP address of the RNC in an ATM network. GUI Value Range: Valid IP address
LOFD-0 03005
Centrali zed U2000 Manage ment
GBFD-1 18601
OM Channel Backup
DSP OMCH LST OMCH
GBFD-1 18611
Unit: None Actual Value Range: Valid IP address Default Value: None
Abis over IP Abis IP over E1/T1
PEER MASK
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
WRFD050404
MOD OMCH
LBFD-0 04002 / TDLBF D-00400 2
DSP OMCH LST OMCH
ATM/IP Dual Stack Node B
Meaning: Indicates the subnet mask of the peer IP address for the remote maintenance channel.
Actual Value Range: Valid subnet mask
LOFD-0 03005
Centrali zed U2000 Manage ment
GBFD-1 18601
OM Channel Backup
GBFD-1 18611
GUI Value Range: Valid subnet mask Unit: None Default Value: None
Abis over IP Abis IP over E1/T1
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
92
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
BRT
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
WRFD050402
Meaning:
MOD OMCH
LBFD-0 04002 / TDLBF D-00400 2
IP Transmi ssion Introduc tion on Iub Interface
DSP OMCH LST OMCH
LOFD-0 03005 GBFD-1 18601 GBFD-1 18611
Centrali zed U2000 Manage ment OM Channel Backup Abis over IP Abis IP over E1/T1
RTIDX
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
Issue 01 (2017-03-15)
ADD OMCH
None
None
Indicates whether a route is bound to the remote maintenance channel. If the peer IP of the remote maintenance channel and device IP addresses are not in the same network segment and the network segment of the device IP address cannot cover that of the peer IP address, run the ADD IPRT command to add a route to the remote maintenance channel. If this parameter is set to YES, a route is bound to the remote maintenance channel, and the route takes effect only when the remote maintenance takes effect. If this parameter is set to NO, no route is bound to the remote maintenance channel, and a remote maintenance channel switchover does not trigger a route status switchover. GUI Value Range: NO(No), YES(Yes) Unit: None Actual Value Range: NO, YES Default Value: NO(No) Meaning: Indicates the index of the active route bound to the remote maintenance channel.
MOD OMCH
GUI Value Range: 0~149
DSP OMCH
Actual Value Range: 0~149
LST OMCH
Unit: None Default Value: None
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
93
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
BINDS ECON DARY RT
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
None
None
Meaning: Indicates whether a standby route needs to be bound to the remote maintenance channel. If the remote HA system is applied to the U2000 and no destination IP address network segment for the route covers the U2000 destination IP address network segment, run the ADD IPRT command to add a route to the U2000.
MOD OMCH DSP OMCH LST OMCH
If this parameter is set to YES, a standby route is bound to the remote maintenance channel, and the route takes effect only when the remote maintenance takes effect. If this parameter is set to NO, no standby route is bound to the remote maintenance channel, and a remote maintenance channel switchover does not trigger a route status switchover. GUI Value Range: NO(No), YES(Yes) Unit: None Actual Value Range: NO, YES Default Value: NO(No)
SECON DARY RTIDX
CHKT YPE
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD OMCH
BSC691 0
STR IPCHK
None
None
Meaning: Indicates the index of the standby route bound to the remote maintenance channel.
MOD OMCH
GUI Value Range: 0~149
DSP OMCH
Actual Value Range: 0~149
Unit: None Default Value: None
LST OMCH None
None
Meaning: Type of the detection that is performed between the BSC and the gateway. GUI Value Range: SBFD, ARP, MBFD Unit: None Actual Value Range: SBFD, ARP, MBFD Default Value: None
CHKT YPE
BSC690 0
STR IPCHK
None
None
Meaning: Type of the detection that is performed between the BSC and the gateway. GUI Value Range: SBFD, ARP, MBFD Unit: None Actual Value Range: SBFD, ARP, MBFD Default Value: None
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
94
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
CARR YT
BSC691 0
STR IPCHK
None
None
Meaning: Port type of the SBFD/ARP bearer GUI Value Range: ETHPORT, TRUNK Unit: None Actual Value Range: ETHPORT, TRUNK Default Value: None
CARR YT
BSC690 0
STR IPCHK
None
None
Meaning: Port type of the SBFD/ARP bearer GUI Value Range: ETHPORT, TRUNK Unit: None Actual Value Range: ETHPORT, TRUNK Default Value: None
MODE
BSC691 0
STR IPCHK
GBFD-1 18611
Abis IP over E1/T1
Meaning: Port check mode. GUI Value Range: CHECK_ON_PRIMARY_TRUNKLINK(Check on Active Sublink in Trunk Group), CHECK_ON_STANDBY_TRUNKLINK(Check on Standby Sublink in Trunk Group) Unit: None Actual Value Range: CHECK_ON_PRIMARY_TRUNKLINK, CHECK_ON_STANDBY_TRUNKLINK Default Value: None
MODE
BSC690 0
STR IPCHK
None
None
Meaning: Port check mode. GUI Value Range: CHECK_ON_PRIMARY_PORT(Check on Active Port), CHECK_ON_STANDBY_PORT(Check on Standby Port), CHECK_ON_INDEPENDENT_PORT(Check on Independent Port), CHECK_ON_PRIMARY_TRUNKLINK(Check on Active Sublink in Trunk Group), CHECK_ON_STANDBY_TRUNKLINK(Check on Standby Sublink in Trunk Group) Unit: None Actual Value Range: CHECK_ON_INDEPENDENT_PORT, CHECK_ON_PRIMARY_PORT, CHECK_ON_STANDBY_PORT, CHECK_ON_PRIMARY_TRUNKLINK, CHECK_ON_STANDBY_TRUNKLINK Default Value: None
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
95
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
MBFD LOCAL IP
BSC691 0
STR IPCHK
None
None
Meaning: Local IP address for multi-hop BFD GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
MBFD LOCAL IP
BSC690 0
STR IPCHK
None
None
Meaning: Local IP address for multi-hop BFD GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
MYDIS CRIMI NATOR
BSC691 0
STR IPCHK
None
None
Meaning: BFD local description mark. GUI Value Range: 1~1024 Unit: None Actual Value Range: 1~512(FG2d/FG2c/FG2e/GOUd/ GOUc/GOUe), 1~1024(EXOUa/EXOUb/EXOUc) Default Value: None
MYDIS CRIMI NATOR
BSC690 0
STR IPCHK
None
None
Meaning: BFD local description mark. GUI Value Range: 1~512 Unit: None Actual Value Range: 1~16(FG2a/GOUa), 1~512(FG2d/FG2c/FG2e/GOUd/GOUc/GOUe) Default Value: None
MINTX INT
BSC691 0
STR IPCHK
None
None
Meaning: Minimum interval between sent BFD packets GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: None
MINTX INT
BSC690 0
STR IPCHK
None
None
Meaning: Minimum interval between sent BFD packets GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: None
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
96
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
MINRX INT
BSC691 0
STR IPCHK
None
None
Meaning: Minimum interval at which two BFD packets are received. GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: None
MINRX INT
BSC690 0
STR IPCHK
None
None
Meaning: Minimum interval at which two BFD packets are received. GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: None
BFDDE TECTC OUNT
BSC691 0
STR IPCHK
None
None
Meaning: Number of timeouts of the BFD packet. If several consecutive BFD packets are not received, the BFD session is set to the DOWN state. GUI Value Range: 3~10 Unit: None Actual Value Range: 3~10 Default Value: 3
BFDDE TECTC OUNT
BSC690 0
STR IPCHK
None
None
Meaning: Number of timeouts of the BFD packet. If several consecutive BFD packets are not received, the BFD session is set to the DOWN state. GUI Value Range: 3~10 Unit: None Actual Value Range: 3~10 Default Value: 3
ROUTE ASSOC IATED FLAG
BSC691 0
STR IPCHK
None
None
Meaning: Whether to isolate the corresponding route when the SBFD/ARP check fails. If this parameter is set to YES and the SBFD/ARP check fails, the system will automatically isolate the route of which the next hop is the peer IP address. GUI Value Range: NO(NO), YES(YES) Unit: None Actual Value Range: NO, YES Default Value: NO(NO)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
97
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
ROUTE ASSOC IATED FLAG
BSC690 0
STR IPCHK
None
None
Meaning: Whether to isolate the corresponding route when the SBFD/ARP check fails. If this parameter is set to YES and the SBFD/ARP check fails, the system will automatically isolate the route of which the next hop is the peer IP address. GUI Value Range: NO(NO), YES(YES) Unit: None Actual Value Range: NO, YES Default Value: NO(NO)
DSCP
BSC691 0
STR IPCHK
None
None
Meaning: Differentiated Services Code Point (DSCP) of a packet. The service priority of a packet is determined based on the value of this parameter. GUI Value Range: 0~63 Unit: None Actual Value Range: 0~63 Default Value: 56
DSCP
BSC690 0
STR IPCHK
None
None
Meaning: Differentiated Services Code Point (DSCP) of a packet. The service priority of a packet is determined based on the value of this parameter. GUI Value Range: 0~63 Unit: None Actual Value Range: 0~63 Default Value: 56
RouteS witchov erDelay
BSC691 0
STR IPCHK
None
None
Meaning: Delay for a switchover from the standby route to the active route after the active route returns to normal. If this parameter is set to 0, the services on the standby route are immediately switched over to the active route. GUI Value Range: 0~600 Unit: s Actual Value Range: 0~600 Default Value: 0
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
98
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
RouteS witchov erDelay
BSC690 0
STR IPCHK
None
None
Meaning: Delay for a switchover from the standby route to the active route after the active route returns to normal. If this parameter is set to 0, the services on the standby route are immediately switched over to the active route. GUI Value Range: 0~600 Unit: s Actual Value Range: 0~600 Default Value: 0
HT
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Bidirectional Forwarding Detection Hop Type. GUI Value Range: SBFD(SINGLE_HOP), MBFD(MULTI_HOP) Unit: None Actual Value Range: SBFD, MBFD Default Value: None
HT
BSC690 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Bidirectional Forwarding Detection Hop Type. GUI Value Range: SBFD(SINGLE_HOP), MBFD(MULTI_HOP) Unit: None Actual Value Range: SBFD, MBFD Default Value: None
SRCIP
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Source IP address of BFD Session. GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
SRCIP
BSC690 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Source IP address of BFD Session. GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
99
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
DSTIP
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Destination IP address of BFD Session. GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
DSTIP
BSC690 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Destination IP address of BFD Session. GUI Value Range: Valid IP Address Unit: None Actual Value Range: Valid IP Address Default Value: None
BTSWT R
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Time for which the BTS waits to restore a BFD session. GUI Value Range: 0~1000000
MOD BTSBF D
Unit: s Actual Value Range: 0~1000000 Default Value: 3
BTSWT R
BSC690 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Time for which the BTS waits to restore a BFD session. GUI Value Range: 0~1000000
MOD BTSBF D
Unit: s Actual Value Range: 0~1000000 Default Value: 3
MINTX INTER VAL
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
MOD BTSBF D
Meaning: Minimum interval at which the BTS sends BFD packets, and the capability of 3900 series base stations must be greater than or equal to 100 ms. GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: 100
MINTX INTER VAL
BSC690 0
ADD BTSBF D MOD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Minimum interval at which the BTS sends BFD packets, and the capability of 3900 series base stations must be greater than or equal to 100 ms. GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: 100
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
100
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
MINRX INTER VAL
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Minimum interval at which the BTS receives BFD packets, and the capability of 3900 series base stations must be greater than or equal to 100 ms.
MOD BTSBF D
GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: 100
MINRX INTER VAL
BSC690 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
MOD BTSBF D
Meaning: Minimum interval at which the BTS receives BFD packets, and the capability of 3900 series base stations must be greater than or equal to 100 ms. GUI Value Range: 10~1000 Unit: ms Actual Value Range: 10~1000 Default Value: 100
DETEC TMUL T
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
MOD BTSBF D
Meaning: Maximum number of periods in which the local end does not receive BFD packets from the peer end. If the number of periods in which the local end does not receive BFD packets from the peer end reaches this parameter, the BTS reports a BFD session fail. GUI Value Range: 3~10 Unit: None Actual Value Range: 3~10 Default Value: 3
DETEC TMUL T
BSC690 0
ADD BTSBF D MOD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Maximum number of periods in which the local end does not receive BFD packets from the peer end. If the number of periods in which the local end does not receive BFD packets from the peer end reaches this parameter, the BTS reports a BFD session fail. GUI Value Range: 3~10 Unit: None Actual Value Range: 3~10 Default Value: 3
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
101
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
DSCP
BSC691 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
Meaning: Indicates the differentiated services code point, which is to be contained in the header of an IP packet. According to this parameter, the router provides differentiated services for packet streams. The greater the value of this parameter, the higher the service level. If this parameter is set to 255 (an invalid value), the value of "DSCP" set in the "SET BTSVLAN" command with "SERVICETYPE" set to OTHERDATA is used as the DSCP. If this parameter is set to a value that ranges from 0 to 63, the value of this parameter is used as the DSCP.
MOD BTSBF D
GUI Value Range: 0~63;255 Unit: None Actual Value Range: 0~63, 255 Default Value: 255 DSCP
BSC690 0
ADD BTSBF D
GBFD-1 18601
Abis over IP
MOD BTSBF D
Meaning: Indicates the differentiated services code point, which is to be contained in the header of an IP packet. According to this parameter, the router provides differentiated services for packet streams. The greater the value of this parameter, the higher the service level. If this parameter is set to 255 (an invalid value), the value of "DSCP" set in the "SET BTSVLAN" command with "SERVICETYPE" set to OTHERDATA is used as the DSCP. If this parameter is set to a value that ranges from 0 to 63, the value of this parameter is used as the DSCP. GUI Value Range: 0~63;255 Unit: None Actual Value Range: 0~63, 255 Default Value: 255
HT
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION MOD BFDSE SSION DSP BFDSE SSION LST BFDSE SSION
Issue 01 (2017-03-15)
WRFD050403 LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
Hybrid Iub IP Transmi ssion Bidirecti onal Forward ing Detectio n Abis over IP
Meaning: Indicates the hop type of a BFD session. The single-hop BFD session is used to perform pointto-point detection at the data link layer, and often used in layer 2 networking scenarios. The multi-hop BFD session is used to perform end-to-end connectivity checks at the transport layer, and often used in layer 3 networking scenarios. GUI Value Range: SINGLE_HOP(Single Hop), MULTI_HOP(Multiple Hops) Unit: None Actual Value Range: SINGLE_HOP, MULTI_HOP Default Value: None
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
102
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
SRCIP
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION
WRFD050403
Hybrid Iub IP Transmi ssion
Meaning: Indicates the source IP address of a BFD session. The source IP address of a BFD session must be a device IP address of a specified board (for example, the IP address of an Ethernet port or a port that carries a PPP link or MP group) or a logical IP address (for example, the IP address of a loopback port), but cannot be set to the same value as the IP address of a remote maintenance channel or a negotiated IP address. Note that a BFD session cannot be configured as a single-hope session if its source IP address is a logical IP address.
MOD BFDSE SSION DSP BFDSE SSION LST BFDSE SSION
LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
Bidirecti onal Forward ing Detectio n Abis over IP
GUI Value Range: Valid IP address Unit: None Actual Value Range: Valid IP address Default Value: None
DSTIP
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION MOD BFDSE SSION DSP BFDSE SSION LST BFDSE SSION
WRFD050403 LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
Hybrid Iub IP Transmi ssion Bidirecti onal Forward ing Detectio n Abis over IP
Meaning: Indicates the destination IP address of a BFD session. The destination IP address must be a valid IP address, and cannot be set to 0.0.0.0 or any existing IP addresses in the system. If Virtual Router Redundancy Protocol (VRRP) is used in the network, two BFD sessions must be configured with the destination IP addresses set to the active and standby physical IP addresses of the virtual router, respectively. GUI Value Range: Valid IP address Unit: None Actual Value Range: Valid IP address Default Value: None
MINTI
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION MOD BFDSE SSION DSP BFDSE SSION LST BFDSE SSION
Issue 01 (2017-03-15)
WRFD050403 LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
Hybrid Iub IP Transmi ssion
Meaning: Indicates the minimum interval at which a BFD session transmits control packets.
Bidirecti onal Forward ing Detectio n
Actual Value Range: 10~1000
GUI Value Range: 10~1000 Unit: ms Default Value: 100
Abis over IP
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
103
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
MINRI
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION
WRFD050403
Hybrid Iub IP Transmi ssion
Meaning: Indicates the minimum interval at which a BFD session receives control packets.
Bidirecti onal Forward ing Detectio n
Actual Value Range: 10~1000
MOD BFDSE SSION DSP BFDSE SSION LST BFDSE SSION
DM
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION MOD BFDSE SSION DSP BFDSE SSION LST BFDSE SSION
CATLO G
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION MOD BFDSE SSION DSP BFDSE SSION LST BFDSE SSION
LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
GUI Value Range: 10~1000 Unit: ms Default Value: 100
Abis over IP WRFD050403 LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
Hybrid Iub IP Transmi ssion
Meaning: Indicates the detection multiplier of a BFD session.
Bidirecti onal Forward ing Detectio n
Actual Value Range: 3~10
GUI Value Range: 3~10 Unit: None Default Value: 3
Abis over IP WRFD050403 LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
Hybrid Iub IP Transmi ssion Bidirecti onal Forward ing Detectio n Abis over IP
Meaning: Indicates the type of a BFD session. If this parameter is set to MAINTENANCE, this BFD session is used only for continuity check (CC). If this parameter is set to RELIABILITY, the BFD session is used to trigger route interlock. Route interlock enables the standby route to take over once the active route becomes faulty, and therefore prevents service interruption caused by route failures. GUI Value Range: MAINTENANCE(Maintenance), RELIABILITY(Reliability) Unit: None Actual Value Range: MAINTENANCE, RELIABILITY Default Value: RELIABILITY(Reliability)
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
104
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
DSCP
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION
WRFD050403
Hybrid Iub IP Transmi ssion
Meaning: Indicates the Differentiated Services Code Point (DSCP). The priority has a positive correlation with the value of this parameter.
Bidirecti onal Forward ing Detectio n
Unit: None
LST BFDSE SSION
LOFD-0 03007 / TDLOF D-00300 7 GBFD-1 18601
GUI Value Range: 0~63 Actual Value Range: 0~63 Default Value: 48
Abis over IP BFDAU THSW
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION
LOFD-0 03007
MOD BFDSE SSION
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates whether a BFD session supports BFD authentication. You are advised to enable the BFD Authentication Switch. GUI Value Range: ON(On), OFF(Off) Unit: None Actual Value Range: ON, OFF
DSP BFDSE SSION
Default Value: OFF(Off)
LST BFDSE SSION BFDAU THTYP E
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION MOD BFDSE SSION DSP BFDSE SSION
LOFD-0 03007
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates the algorithm used during BFD authentication. GUI Value Range: MD5(MD5), MeMD5(MeMD5), SHA1(SHA1), MeSHA1(MeSHA1) Unit: None Actual Value Range: MD5, MeMD5, SHA1, MeSHA1 Default Value: SHA1(SHA1)
LST BFDSE SSION
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
105
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
KEYC HAINI D
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDSE SSION
LOFD-0 03007
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates the ID of a configured BFD key chain.
MOD BFDSE SSION
GUI Value Range: 0~255 Unit: None Actual Value Range: 0~255 Default Value: 0
DSP BFDSE SSION LST BFDSE SSION
KEYC HAINI D
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDKE YCHAI N
LOFD-0 03007
LST BFDKE YCHAI N
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates the ID of a configured BFD key chain. GUI Value Range: 0~255 Unit: None Actual Value Range: 0~255 Default Value: None
MOD BFDKE YCHAI N RMV BFDKE YCHAI N KEYC HAIND ESC
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDKE YCHAI N MOD BFDKE YCHAI N
LOFD-0 03007
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates the description of a BFD key chain. GUI Value Range: 0~127 characters Unit: None Actual Value Range: 0~127 characters Default Value: None
LST BFDKE YCHAI N
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
106
GSM BSS IP BSS Engineering Guide Feature Parameter Description
5 Parameters
Parame ter ID
NE
MML Comma nd
Feature ID
Feature Name
Description
KEYC HAINI D
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDKE Y
LOFD-0 03007
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates the ID of a configured BFD key chain.
LST BFDKE Y
GUI Value Range: 0~255 Unit: None Actual Value Range: 0~255 Default Value: None
MOD BFDKE Y RMV BFDKE Y
KEYID
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
ADD BFDKE Y
LOFD-0 03007
LST BFDKE Y
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates the index of a key in a BFD key chain, which must be consistent with the index of the key at the peer end. GUI Value Range: 0~255 Unit: None Actual Value Range: 0~255
MOD BFDKE Y
Default Value: None
RMV BFDKE Y KEY
BTS390 0, BTS390 0 WCDM A, BTS390 0 LTE
Issue 01 (2017-03-15)
ADD BFDKE Y MOD BFDKE Y LST BFDKE Y
LOFD-0 03007
Bidirecti onal Forward ing Detectio n(BFD)
Meaning: Indicates the key settings in a BFD key chain, which must be consistent with the key settings at the peer end. GUI Value Range: 1~20 characters Unit: None Actual Value Range: 1~20 characters Default Value: None
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
107
GSM BSS IP BSS Engineering Guide Feature Parameter Description
6 Counters
6
Counters
There are no specific counters associated with this feature.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
108
GSM BSS IP BSS Engineering Guide Feature Parameter Description
7 Glossary
7
Glossary
For the acronyms, abbreviations, terms, and definitions, see the Glossary.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
109
GSM BSS IP BSS Engineering Guide Feature Parameter Description
8
8 Reference Documents
Reference Documents
There are no specific reference documents associated with this feature.
Issue 01 (2017-03-15)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
110