POWER CABLE AMPACITY (132 kV)
132 kV, 1200 mm2 In trench section In !! crossin" section In !#ct $%nk &or crossin" section
CO'TE'T( Variable ata (!eneral)
4
Po)er C%$*e Am+%cit C%*c#*%tions 1.
A" #e$i$tance o% "onductor
13
2.
ielectric &o$$ per 'nit &ent %or te *n$ulation
1+
3.
&o$$ Factor %or ,etallic -creen and -eat
1+
4.
"alculation o% ermal #e$i$tance
21
+.
"ond "onduc ucto torr emp emper erat atur ure e #i$e #i$e abo/ abo/e e te te Ambi Ambien entt
2
.
"ontinuou$ "urrent "arryin "apacity o% one 132 kV circuit
2
7.
#eduction %actor o% one 132 kV "ircuit
2
.
-upe -uperr po$ po$it itio ion n met meto od d to calc calcul ulat ate e int inter erac actio tion n o% o% ru ru 132 132 kV cabl cable e circuit and to exi$tin 400 kV cable circuit$
3
#edu #educt ctio ion n %ac %acto torr o% o% inte intera ract ctio ion n o% o% ru ru 132 132 kV kV cab cable le circ circui uit$ t$ it it te te to exi$tin 400 kV cable circuit$
+1
.
Po)er C%$*e Im+e-%nce C%*c#*%tions 1.
5o$iti/e6Neati/e -euence *mpedance
7
2.
8ero *mpedance
7
CO'TE'T( Variable ata (!eneral)
4
Po)er C%$*e Am+%cit C%*c#*%tions 1.
A" #e$i$tance o% "onductor
13
2.
ielectric &o$$ per 'nit &ent %or te *n$ulation
1+
3.
&o$$ Factor %or ,etallic -creen and -eat
1+
4.
"alculation o% ermal #e$i$tance
21
+.
"ond "onduc ucto torr emp emper erat atur ure e #i$e #i$e abo/ abo/e e te te Ambi Ambien entt
2
.
"ontinuou$ "urrent "arryin "apacity o% one 132 kV circuit
2
7.
#eduction %actor o% one 132 kV "ircuit
2
.
-upe -uperr po$ po$it itio ion n met meto od d to calc calcul ulat ate e int inter erac actio tion n o% o% ru ru 132 132 kV cabl cable e circuit and to exi$tin 400 kV cable circuit$
3
#edu #educt ctio ion n %ac %acto torr o% o% inte intera ract ctio ion n o% o% ru ru 132 132 kV kV cab cable le circ circui uit$ t$ it it te te to exi$tin 400 kV cable circuit$
+1
.
Po)er C%$*e Im+e-%nce C%*c#*%tions 1.
5o$iti/e6Neati/e -euence *mpedance
7
2.
8ero *mpedance
7
POWER CABLE AMPACITY CALC.LATIO'( *9" 027 : "*!#9 ;! 1<03
"A&9 =59> 132 kV ?&59 cable@ 12$mm@ copper conductor@ lead : 59 $eated /BR. *N-A&&A*BN 5&A"9> A' A* < '.A.9. 5#BC9"> A' A* 2 6 9A@ #AN-"B N7144
VARIABLE !ATA A E*ectric%* (stem !%t%
400000 U p_400 :=
(5a$e to pa$e /oltae@ V)
132000 U p_132 :=
(5a$e to pa$e /oltae@ V)
fc := 50
(Freuency@ D)
ω := 2.π fc
(Anular %reuency@ D)
63000 Iccs_400 :=
(,ax. eart<%ault current in cable $eat@ A)
31500 Iccs_132 :=
(,ax. eart<%ault current in cable $eat@ A)
tcc := 0.5
(-ort
1102.3 P400tr :=
(ran$mi$$ion capacity %or induced /oltae calculation@ ,VA)
P400hdd := 568
(ran$mi$$ion capacity %or induced /oltae calculation@ ,VA)
P400rc := 800
(ran$mi$$ion capacity %or induced /oltae calculation@ ,VA)
Inom_400tr :=
P400tr
(
U p_400⋅ 10
Inom_400hdd :=
Inom_400rc :=
(Nominal tran$mi$$ion current in trenc@ A)
)⋅
−6
(
(Nominal tran$mi$$ion current in cro$$in@ A)
)⋅
−6
(
U p_400⋅ 10
(Nominal tran$mi$$ion current in road cro$$in@ A)
)⋅
Inom_400hdd = 820
3
P400rc −6
Inom_400tr = 1591
3
P400hdd U p_400⋅ 10
ω = 314.2
3
Inom_400rc = 1155
B C%$*e Constr#ction !%t% n := 1
(Number o% load
n p := 1
(Number oc conductor$ in parallel)
dc := 45
(iamenter o% conductor@ mm)
1200 Acc :=
("ro$$<$ection o% copper condutor@ mm2 )
tc1 := 0.9
(ickne$$ o% conductor binder6$ellin tape@ mm)
dc0 := dc + 2 ⋅ tc1
(iamenter o% conductor@ includin binder tape@ mm)
tc2 := 1.5
(A/arae tickne$$ o% conductor $creen@ mm)
tcs := tc1 + tc2
(otal tickne$$ o% conductor $creen@ mm)
tcs = 2.4
dc1 := dc + 2 tcs
( iameter o% conductor@ includin $creen@ mm)
dc1 = 49.8
ti := 16
(,in. a/arae tickne$$ o% in$ulation@ mm)
din := dc + 2 tcs + 2 ti
(9xternal diamenter o% in$ulation@ excludin $creen@ mm)
tinss := 1.8
(,in. a/. tickne$$ o% in$ulation $creen@ mm)
(
d bst := din + 2 tinss
)
(iameter o/er in$ulation $creen@ mm)
tst1 := 0.9
(ickne$$ o% $ellin tape6beddin@ mm)
d bcs := d bst + 2 tst1
(iameter o/er $ellin tape6beddin@ mm)
tcms :=
d bcs − dc
(ickne$$ beteen condcutor and metal $eat@ mm)
2
tls := 3.6
(A/. tickne$$ o% lead $eat@ mm)
dals := d bcs + 2 tls
(iameter o/er lead $eat@ mm)
dlad := dals − tls
(,ean diameter o% lead $eat@ mm)
dmm := dals − tls
(,ean eometric diameter o% lead $eat@ mm)
−6 Alad := π tls d bcs + tls 10
(
tos := 4.7
)
("ro$$<$ection o% lead $eat@
m2 )
(A/. tickne$$ o% outer co/erin@ includin -" $kin@ mm)
dc0 = 46.8
din = 81.8
d bst = 85.4
d bcs = 87.2
tcms = 21.1
dals = 94.4 dlad = 90.8 dmm = 90.8 −3 Alad = 1.027 × 10
C E*ectric%* Ch%r%cteristics −6 15.1 × 10 ! o :=
(.". re$i$tance o% te conductor at 20E"@ Bm6m)
−8 ρcoppr := 1.7241 × 10
(9lectrical re$i$ti/ity o% "opper@ Bm6m) < *9" 027<1<1@ able 1
−8 21.4 × 10 ρlad :=
(9lectrical re$i$ti/ity o% &ead@ Bm6mm) < *9" 027<1<1@ able 1
! E*ectric%* Coe&&icients
0.37 " p :=
(5roximity e%%ect coe%%icient acc. to "ire tecnical paper nE272@ ;orkin !roup 1.03)
0.44 " s :=
(5roximity e%%ect coe%%icient acc. to "ire tecnical paper nE272@ ;orkin !roup 1.03)
E Ins#*%tion Ch%r%cteristics ε p := 2.4
(#elati/e permitti/ity o% in$ulation)
0.001 tan# δ$ :=
(&o$$ %actor o% te in$ulation)
4 Therm%* Resisti5ities ρ%lp := 3.5
(emal re$i$ti/ity o% ?&59@ .m6; acc to *9" 027<2<1)
ρ p := 3.5
(emal re$i$ti/ity o% 59@ .m6; acc to *9" 027<2<1)
ρ b := 6
(emal re$i$ti/ity o% $ellin tape$@ .m6;)
ρsc := 2.5
(emal re$i$ti/ity o% -6"@ .m6;)
ρ p&c := 6
(emal re$i$ti/ity o% 5V"@ .m6; acc to *9" 027<2<1)
ρsr := 1.2
(emal $oil re$i$ti/ity at road cro$$in @ .m6;)
ρst := 1.2
(emal $oil re$i$ti/ity in trec (-tabili$ed $ourroundin @ .m6;)
ρ bntonit := 1.0
(emal re$i$ti/ity o% bentonite @ .m6;)
ρconcrt := 1.0
(emal $oil re$i$ti/ity o% concrete o% te duct bank @ .m6;)
ρhdd := 1.0
(emal $oil re$i$ti/ity o% $ection @ .m6;)
Tem+er%t#res %n- Tem+er%t#re Coe&&icients
Θma% := 90
(,ax. operatin temperature o% conductor. E")
Θc1 := 250
(,ax. $ort
Θms := 80
(,ax. orkin temperature o% te lead $eat@ E")
Θcs1 := 250
(Final eart<%ault temperature o% copper ire $creen@ E")
Θcs2 := Θms
(*nitial eart<%ault temperature o% copper ire $creen@ E")
Θl1 := 180
(Final eart<%ault temepratre o% lead $eat@ E")
Θc'ro(nd := 40
(,ax. round temperature@ E")
Θ bntonit := 70
(,ean temperature o% te medium %illin beteen cable and duct@ E")
77.3 Θap :=
(,ean temperature o% air in$ide te road cro$$in pipe@ E")
−3 αc20 := 3.93 × 10
("on$tant copper temperature coe%%icient@ 16E")
−3 αlad := 4 × 10
(emperature coe%%icient o% lead $eat re$i$tance. 16E")
βc := 234.5
(#eciprocal o% temperature coe%%icient o% re$i$tance copper)
)c := 226
("on$tant o% copper)
βs := 230
(#eciprocal o% temperature coe%%icient o% re$i$tance lead)
)s := 41
("on$tant o% lead)
T+ic%* Tro#"h cross6sction 132 kV Circ#it
1150 h'cb_tr := h'1ca_tr := h'cb_tr −
(i$tance %rom round $ur%ace to cable bottom@ mm) do
2
(i$tance %rom round $ur%ace to cable axi$@ mm)
s tr := 200
(Axial $pacin o% conductor #@=@ in trenc@ mm)
s ctr := 2100
("enter to "enter di$tance o% cable circuit$ in trenc@ mm)
Θm_tr := 81.5
(;orkin temperature o% te lead $eat in trou@ E")
h'1ca_tr = 1098
I !! Crossin" 132 kV Circ#it
t pip_hdd := 15
(ickne$$ o% 59 duct all@ mm)
di pip_hdd := 195
(*n$ide diameter o% 59 duct@ mm)
(
)
do pip_hdd := di pip_hdd + 2 pip_hdd t
(Butdi$e diamenter o% 59@ mm)
tbt := 50
(ickne$$ o% bentonite layer around te cable@ mm)
s hdd := do pip_hdd
(Axial $pacin o% te conductor$ in $ection@ mm)
7000 + *hdd := Θm_hdd := 80
1 2
+
do pip_hdd = 225
3
do 3 pip_hdd (i$tance %rom road le/el to te tre%oil center@ mm)
(;orkin temperature o% te lead $eat in trou@ E")
*hdd = 7242
7 T+ic%* Ro%- Crossin" 132 kV Circ#it
t pip_rc := 10
(ickne$$ o% 59 duct all@ mm)
di pip_rc := 180
(*n$ide diameter o% 59 duct@ mm)
(
)
do pip_rc := di pip_rc + 2 t pip_rc
(Butdi$e diamenter o% 59@ mm)
tbt := 50
(ickne$$ o% bentonite layer around te cable@ mm)
1800 +,- :=
(;idt o% te uct bank@ mm)
,- := 550
(eit o% te uct bank@ mm)
1225 h',- :=
(ept o% te uct bank centre@ mm)
/ := 3
(Number o% cable$ o% al% duct bank$)
do pip_rc = 200
s crc := 2100
("enter to "enter di$tance o% cable circuit$ in trenc@ mm)
1325 h'cb_rc :=
(i$tance %rom round $ur%ace to cable bottom@ mm)
h'db_rc := h'cb_rc +
t pip_rc
do
h'1ca_rc := h'cb_rc −
h'da_rc := h'db_rc −
(i$tance %rom round $ur%ace to duct bottom@ mm)
2
(i$tance %rom round $ur%ace to cable axi$@ mm)
2 di pip_rc
(i$tance %rom round $ur%ace to duct axi$@ mm)
2
80.5 Θm_rc :=
h'db_rc = 1330
h'1ca_rc = 1273
h'da_rc = 1240
(;orkin temperature o% te lead $eat in trou@ E")
8 !et%i*s o& +%r%**e* r#nnin" 900 kV C%$*es in Tro#"h (ection 1100 h'400_tr :=
(urial dept %rom round $ur%ace to cable bottom@ mm)
2800 , 400a_400b_tr :=
(Axial di$tance beteen 400 kV and 400 kV "ircuit$@ mm)
2100 , 400a_132_tr :=
(Axial di$tance beteen 400 kV clo$e$t and 132 kV "ircuit$@ mm)
4900 , 400b_132_tr :=
(Axial di$tance beteen 400 kV %urte$t and 132 kV "ircuit$@ mm)
400_tr := 600
(Axial di$tance beteen o% te 400 kV circuit$@ mm)
2500 A400 :=
("ro$$ $ection o% copper conductor@ mm 2)
−6 9.7232 × 10 ! A_400_tr :=
(A" re$i$tance o% te conductor@ Bm6m)
0.0901 λ 1a_tr_400 :=
(&o$$ %actor %or $creen and $eat o% pa$e 1)
λ 1b_tr_400 := 0.0605
(&o$$ %actor %or $creen and $eat o% pa$e 2)
λ 1c_tr_400 := 0.0601
(&o$$ %actor %or $creen and $eat o% pa$e 3)
1.08 +d400 :=
(ielectric &o$$e$@ ;6m)
I !et%i*s o& +%r%**e* r#nnin" 900 kV C%$*es in !! (ection 7500 h'400_hdd :=
(urial dept %rom round $ur%ace to cable bottom@ mm)
do400pip := 280
(ickne$$ o% 59 pipe@mm)
400_hdd := do400pip = 280
(Axial di$tance beteen o% te 400 kV circuit$@ mm)
7000 + *400hdd :=
1 2
+
3 3
do400pip (i$tance %rom road le/el to tre%oil center@mm)
hl400 := *400hdd − 400_hdd ⋅
bl400 := *400hdd + 400_hdd ⋅
3 3 3
(urial dept o% te upmo$t cable$@mm)
hl400 = 7140
(urial dept o% te deepe$ cable$@mm)
bl400 = 7463
3
3000 , 400a_400b_hdd :=
(Axial di$tance beteen 400 kV and 400 kV "ircuit$@ mm)
3000 , 400a_132_hdd :=
(Axial di$tance beteen 400 kV clo$e$t and 132 kV "ircuit$@ mm)
6000 , 400b_132_hdd :=
(Axial di$tance beteen 400 kV %urte$t and 132 kV "ircuit$@ mm)
−6 9.754 × 10 ! A_400_hdd :=
(A" re$i$tance o% te conductor@ Bm6m)
λ 1_hdd_400 := 0.1
(&o$$ %actor %or $creen and $eat )
7 !et%i*s o& +%r%**e* r#nnin" 900 kV C%$*es in Ro%- Crossin" (ection 1350 h'400_rc :=
(urial dept %rom round $ur%ace to cable bottom@ mm)
2800 , 400a_400b_rc :=
(Axial di$tance beteen 400 kV and 400 kV "ircuit$@ mm)
2100 , 400a_132_rc :=
(Axial di$tance beteen 400 kV clo$e$t and 132 kV "ircuit$@ mm)
4900 , 400b_132_rc :=
(Axial di$tance beteen 400 kV %urte$t and 132 kV "ircuit$@ mm)
400_rc := 300
(Axial di$tance beteen o% te 400 kV circuit$@ mm)
−6 9.723 × 10 ! A_400_rc :=
(A" re$i$tance o% te conductor@ Bm6m)
0.0604 λ 1b_rc_400 :=
(&o$$ %actor %or $creen and $eat o% pa$e 2)
λ 1c_rc_400 := 0.0600
(&o$$ %actor %or $creen and $eat o% pa$e 3)
1 AC Resist%nce o& Con-#ctor !C Resist%nce o& Con-#ctor " coppr # Θ$ := 1 + αc20# Θ − 20$
(
)
! := ! o⋅ " coppr Θma%
(Factor)
(
)
" coppr Θma% = 1.3
(.". re$i$tance o% conductor at max. operatin temperature@ Bm6m) −5 ! = 1.925 × 10
! 20 := ! o
(.". #e$i$tance o% condcutor at 20E"@ Bm6m)
−5 ! 20 = 1.51 × 10
11 C%$*es in tro#"h 111 (kin E&&ect 4%ctor %s :=
s :=
8 π fc ! %s
( 10− 7) ⋅ " s
(Factor)
%s = 1.695
4
(-kin e%%ect %actor)
192 + 0.8%s
4
s = 0.0415
112 Pro:imit e&&ect &%ctor % p :=
8π fc !
−7
10
(Factor %or conduit$)
" p
% p = 1.554
2 % 4 d 2 192 + 0.8 % 4 dc ( p) p c + 1.18 p# s $ := 0.312 4 s s 4 4 ( % p) + 0.27 192 + 0.8 ( % p) 192 + 0.8% p
( )
p str = 0.006
113 AC Resist%nce o& the Con-#ctor
(
( ))
!cac_tr := ! ⋅ 1 + s + p s tr
(A.". re$i$tance o% conductor at max. operatin temperature @ Bm6m)
(
( ))
!cac_tr20 := ! 20⋅ 1 + s + p s tr
(A.". re$itance o% condcutor at 20E" temperature@ Bm6m) −5 !cac_tr20 = 1.6 × 10
12 C%$*es in !! 121 (kin e&&ect &%ctor s = 0.0415
122 Pro:imit e&&ect &%ctor
(
)
p s hdd = 0.00469
123 AC Resist%nce o& the Con-#ctor
(
(
))
!cac_hdd := ! ⋅ 1 + s + p shdd
(A.". re$i$tance o% conductor at max. operatin temperature@ Bm6m) −5 !cac_hdd = 2.014 × 10
(
(
))
!cac_hdd20 := ! 20⋅ 1 + s + p shdd
(A.". re$i$tance o% conductor at 20E" temperature@ Bm6m) −5 !cac_hdd20 = 1.6 × 10
13 C%$*es in !#ct B%nk %t Ro%- crossin" 131 (kin e&&ect &%ctor s = 0.0415
132 Pro:imit e&&ect &%ctor
( )
p s rc = 0.00263
133 AC Resist%nce o& the con-#ctor
(
( ))
!cac_rc := ! ⋅ 1 + s + p src
(A.". re$i$tance o% conductor at max. operatin temperature@ Bm6mm)
(
( ))
!cac_rc20 := ! 20⋅ 1 + s + p src
(A.". re$i$tance o% conductor at 20E" temperature@ Bm6m) −5 !cac_rc20 = 1.6 × 10
2 !ie*ectric Loss +er .nit Len"th &or the Ins#*%tion ε p
:=
−9
din
⋅ 10
("apacitance o% eac pa$e aain$t te $creen $urroundin@ F6m6pa$e) − 12 = 268.7 × 10
18. ln
dc1
U o :=
U p_132
(5a$e to neutral /oltae@ V)
3
3 Ic := Uo⋅ ω⋅ ⋅ 10
("arin current per conductor@ A6km)
2 +d := ω⋅ ⋅ Uo ⋅ tan# δ$
(ielectric lo$$e$ per unit lent per pa$e@ ;6m)
3 U o = 76.2 × 10
Ic = 6.43
+d = 0.49
3 Loss 4%ctor &or the Met%**ic (creen %n- (he%th (1) Equivalent Resistance of Lead Sheath
(
)
( Θm − 20) ⋅ αlad
" lad Θm := 1 +
(Factor)
1.05 " lad20 :=
(
)
!s lad Θm :=
ρlad Alad
ρlad Alad
⋅ " lad( Θm)
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
−6
⋅ " lad# 20 $ = 208.39 × 10
(,ax. .". metallic $eat re$i$tance at 20E"@ Bm6m)
(2) General
( )
m Θm :=
⋅ 10− 7
ω
!slad( Θm)
(
)
(
) :=
(
)
ρs Θm := ρlad⋅ " lad Θm
β Θ
4π ω
(9lectrical re$i$ti/ity o% te lead $eat at $creen temperature)
( )
's Θm := 1
(Note < For lead $eat cable$ $ can be take a$ unity and
( β1⋅ ts)
4
12 12 × 10
can be nelected < *9" 027<1<1)
31 Circ#*%tion Loss 4%ctor /C*23;2 o& IEC ;02<=6161 /1 Circ#*%tin" *oss c%*c#*%tion &or three sin"*e6core c%$*es in &*%t &orm%tion, )itho#t tr%ns+osition, she%thes $on-e- %t $oth en-s /C*%#se 232 − 7. 2s ⋅ ln flat# s$ := 2.ω⋅ 10 dlad
m_flat := 2 ω⋅ 10
(#eactance o% -eat per unit lent@ Bm6m)
−7
⋅ ln# 2 $
(,utual reactance per unit lent o% cable beteen te $eat o% an outer cable and conductor@ Bm6m) −6 m_flat = 43.552 × 10
P# s$ := flat# s$ + m_flat
m_flat
# s$ := flat# s$ −
3
/% Centre C%$*e
(
)
λ 1flat_a Θm , s , ! ac :=
(
(
)
!slad Θm
!s
! ac
)
# s$
(
(
)
lad Θm
2
2
+ # s $
)
λ 1flat_cba Θm , s , ! ac := λ 1flat_a Θm , s , ! ac 0.004 ⋅
2
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o% 0.004)
/$O#ter c%$*e Le%-in" +h%se
(
)
λ 1flat_b Θm , s , ! ac :=
(
( )
2
!slad Θm
0.75⋅ P # s$
! ac
2 2 !s lad( Θm) + P# s$
)
(
)
λ 1flat_cbb Θm , s , ! ac := λ 1flat_b Θm , s , ! ac 0.004 ⋅
+
0.25 # s$
(
)
!s lad Θm
2
+ # s$
+ 2
( )
2
2 !slad Θm ⋅ P# s$ ⋅ # s$ ⋅ m_flat 3 + !slad Θm
( )
2
+ P# s$
2
!s
(
)
lad Θm
2
+ # s $
2
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o % 0.004)
/$O#ter c%$*e L%""in" +h%se
(
)
λ 1flat_c Θm , s , ! ac :=
(
)
!slad Θm
0.75⋅ P # s$
2
+
0.25 # s$
(
2
+
)
2 !slad Θm ⋅ P# s$ ⋅ # s$ ⋅ m_flat
(
)
(
)
λ 1flat_cbc Θm , s , ! ac := λ 1flat_c Θm , s , ! ac 0.004 ⋅
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o % 0.004)
/2 Circ#*%tin" *oss c%*c#*%tion &or three sin"*e6core c%$*es in tre&oi* &orm%tion $on-e- %t $oth en-s /C*%#se 231 − 7. 2. s ⋅ ln trf # s$ := 2.ω⋅ 10 dlad
(#eactance o% -eat per unit lent@ Bm6m) −4 trf shdd = 1.006 × 10
(
(
)
λ 1_trf Θm , s , ! ac :=
( )
!slad Θm
1
! ac
1+
!slad( Θm)
(
)
(
trf # s $
)
λ 1_trf_cb Θm , s , ! ac := λ 1_trf Θm , s , ! ac 0.004 ⋅
2
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o % 0.004)
32 E-- C#rrent Loss 4%ctor /C*23;1 o& IEC ;02<=6161 (1) Eddy Current loss calculation formula for the three single-core cales in trefoil formation
m Θ 2 d 2 ( m) lad λ 0_t ( Θm , s) := 3 ⋅ ⋅ 2 2 s 1 + m( Θm)
(
)
(
)
( )
∆1_t Θm , s := 1.14 m Θm
2.45
+ 0.33 ⋅
dlad
2s
0.92 m( Θm) + 1.66
∆2_t Θm , s := 0
(
)
λ 1_t Θm , s , ! ac :=
!slad( Θm) ! ac
⋅ 's( Θm) ⋅ λ 0_t ( Θm , s) ⋅ ( 1 + ∆1_t ( Θm, s) + ∆2_t ( Θm, s) )
(2) Eddy Current loss calculation formula for three single-core cales in flat formation % Centre c%$*e
λ 0a( Θm , s) := 6
(
2 2 ) dlad
m Θm
⋅
)
( 9ddy current lo$$ %actor %or cable$ in trou)
(
)
(
)
( )
∆1a Θm , s := 0.86 m Θm
d 3.08 lad
⋅
1.4 m( Θm) + 0.7
2s
∆2a Θm , s := 0
(
!slad( Θm)
)
λ 1a Θm , s , ! ac :=
! ac
⋅ 's( Θm) ⋅ λ 0a( Θm, s) ⋅ ( 1 + ∆1a( Θm , s) + ∆2a( Θm , s) )
$ O#ter c%$*e *e%-in" +h%se
m Θ 2 d 2 ( m) lad λ 0b( Θm , s) := 1.5 ⋅ 2 2 s 1 + m( Θm)
(
)
(
)
0.16 m( Θm) + 2
) 2s
∆1b Θm , s := 4.7 m Θm
(
d 0.7 lad
(9ddy current lo$$ %actor %or cable$ in trou)
d 3.3 lad
1.47 m( Θm) + 5.06
( ) 2s
∆2b Θm , s := 21 m Θm
(
)
λ 1b Θm , s , ! ac :=
!slad( Θm) ! ac
⋅ 's( Θm) ⋅ λ 0b( Θm , s) ⋅ ( 1 + ∆1b( Θm , s) + ∆2b( Θm, s) )
C O#ter c%$*e *%""in" +h%se
m Θ 2 d 2 ( m) lad λ 0c( Θm , s) := 1.5 ⋅ 2 2 s 1 + m( Θm)
(
)
∆1c Θm , s :=
(
( ( )
)
( ( )
)
2 + m Θm − 0.3
)
(
)
∆2c Θm , s := 0.92 m Θm
(
) (
0.74 m Θm + 2 m Θm
)
λ 1c Θm , s , ! ac :=
0.5
2
d 3.7 lad
⋅
!slad( Θm)
2s
(9ddy current lo$$ %actor %or cable$ in trou)
⋅
dlad
2s
( ) +1
m Θm
( ) +2
m Θm
⋅ 's( Θm) ⋅ λ 0c( Θm, s) ⋅ ( 1 + ∆1c( Θm , s) + ∆2c( Θm , s) )
33 Loss 4%ctor &or (he%th %n- screen 331 Loss 4%ctor &or (he%th in tro#"h −6 !s lad Θms = 258.403 × 10
(
)
(
)
(
)
(
)
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
λ 1flat_cba Θms , str , !cac_tr = 0.0043 ("irculatin current lo$$ %actor on lead $eat o% centre cable)
λ 1flat_cbb Θms , str , !cac_tr = 0.0095 ("irculatin current lo$$ %actor on lead $eat o% outer leadin cable)
λ 1flat_cbc Θms , str , !cac_tr = 0.0095 ("irculatin current lo$$ %actor on lead $eat o% outer lain cable)
(
)
(
)
(
)
λ 1a Θms , str , !cac_tr = 0.0577
(9ddy current lo$$ %actor on lead $eat o% centre cable)
λ 1b Θms , str , !cac_tr = 0.0152
λ 1c Θms , str , !cac_tr = 0.0152
(
)
(9ddy current lo$$ %actor on lead $eat o% outer cable leadin pa$e)
(9ddy current lo$$ %actor on lead $eat o% outer cable lain pa$e)
(
)
(
λ 1a_tr Θm , s , ! ac := λ 1flat_cba Θm , s , ! ac + λ 1a Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 1)
(
)
λ 1a_tr Θms , str , !cac_tr = 0.0621
(
)
(
)
(
λ 1b_tr Θm , s , ! ac := λ 1flat_cbb Θm , s , ! ac + λ 1b Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 2)
(
)
λ 1b_tr Θms , str , !cac_tr = 0.0247
(
)
(
)
(
λ 1c_tr Θm , s , ! ac := λ 1flat_cbc Θm , s , ! ac + λ 1c Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 3)
(
)
λ 1c_tr Θms , str , !cac_tr = 0.0247
(
)
λ 1_tr := λ 1a_tr Θms , str , !cac_tr = 0.0621
(&o$$ %actor u$ed %or current ratin calculation)
332 Loss 4%ctor &or (he%th %n- (creen in !! −6 !s lad Θms = 258.4 × 10
(
)
(
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
)
λ 1_trf_cb Θms , shdd , !cac_hdd = 0.0067
(
("irculatin current lo$$ %actor)
)
λ 1_t Θms , shdd , !cac_hdd = 0.0233 (9ddy current lo$$ %actor on lead $eat o% centre cable)
(
)
(
)
(
λ 1_hddf Θm , s , ! ac := λ 1_trf_cb Θm , s , ! ac + λ 1_t Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen6$eat %or tre%oil %ormation)
(
)
λ 1_hddf Θms , shdd , !cac_hdd = 0.03
(
)
λ 1_hdd := λ 1_hddf Θms , shdd , !cac_hdd = 0.03
(&o$$ %actor u$ed %or current ratin calculation)
333 Loss 4%ctor &or (he%th %n- (creen in Ro%- crossin" −6 !s lad Θms = 258.403 × 10
(
)
(
)
(
)
(
)
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
λ 1flat_cba Θms , src , !cac_rc = 0.0072 ("irculatin current lo$$ %actor on lead $eat o% centre cable)
λ 1flat_cbb Θms , src , !cac_rc = 0.0127 ("irculatin current lo$$ %actor on lead $eat o% outer leadin cable)
λ 1flat_cbc Θms , src , !cac_rc = 0.0127 ("irculatin current lo$$ %actor on lead $eat o% outer lain cable)
(
)
λ 1a Θms , src , !cac_rc = 0.0257
(9ddy current lo$$ %actor on lead $eat o% centre cable)
−3 (9ddy current lo$$ %actor on lead $eat o% outer cable leadin pa$e) λ 1b Θms , src , !cac_rc = 6.584 × 10
(
)
(
)
λ 1c Θms , src , !cac_rc = 0.0066
(
)
(
(9ddy current lo$$ %actor on lead $eat o% outer cable lain pa$e)
)
(
λ 1a_rc Θm , s , ! ac := λ 1flat_cba Θm , s , ! ac + λ 1a Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 1)
(
)
(
)
(
λ 1b_rc Θm , s , ! ac := λ 1flat_cbb Θm , s , ! ac + λ 1b Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 2)
(
)
λ 1b_rc Θms , src , !cac_rc = 0.0193
(
)
(
)
(
λ 1c_rc Θm , s , ! ac := λ 1flat_cbc Θm , s , ! ac + λ 1c Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 3)
(
)
λ 1c_rc Θms , src , !cac_rc = 0.0193
(
)
λ 1_rc := λ 1a_rc Θms , src , !cac_rc = 0.0329 (&o$$ %actor u$ed %or current ratin calculation)
9 C%*c#*%tion o& Therm%* Resist%nce 91 Therm%* Resist%nce $et)een on con-#ctor %n- she%th, T1 /C*2111 o& IEC ;02=16261 911 Therm%* Resist%nce o& $in-er t%+e o5er con-#ctor 10 :=
ρ b
2π
dc0
⋅ ln
(ermal re$i$tance beteen one conductor and -6"@ .m6;)
dc
10 = 0.0375
912 Therm%* Resist%nce o& (>C screen o5er $in-er t%+e 11 :=
ρsc
2π
dc1
⋅ ln
dc0
(ermal re$i$tance beteen one conductor and in$ulation $eat@ .m6;) 11 = 0.0247
913 Therm%* Resist%nce o& ?LPE ins#*%tion 12 :=
ρ%lp
2π
din
⋅ ln
(ermal re$i$tance beteen one conductor and -6"@ .m6;)
dc1 12 = 0.2764
919 Therm%* Resist%nce o& (>C screen o5er ins#*%tion 13 :=
ρsc
d bst
⋅ ln
(ermal re$i$tance beteen one conductor and metallic $eat@ .m6;)
91@ Therm%* Resist%nce o& (>C Be--in" $e*o) Le%- (he%th ρ b
14 :=
2π
d bcs
⋅ ln
(ermal re$i$tance beteen -ellin tape@ .m6;)
d bst 14 = 0.0199
91; Therm%* Resist%nce one con-#ctor %n- she%th, T1 1 := 10 + 11 + 12 + 13 + 14
1 = 0.3757
92 Therm%* Resist%nce $et)een (he%th %n- Armo#r, T2 /C* 212 o& IEC ;02<=6261 2 := 0
(No armourin)
2 = 0
93 Therm%* Resist%nceo& o#ter co5erin", T3 /C* 213 o& IEC ;02<=6261
ρ p
3 :=
2π
2.tos
dals
⋅ ln 1 +
(ermal re$i$tance o% outer co/er@ .m6;)
3 = 0.0529
99 Therm%* Resist%nceo& c%$*e s#rro#n-in", T9 /C* 22 o& IEC ;02<=6261 991 C%$*es in tro#"h For 3 cable$ a/in uneual $eat lo$$e$@ laid in %lat %ormation and eually $paced apart
( :=
( 2.h'1ca_tr )
( = 21.158
do
(1 := ln ( +
(
2 ( −1
ρsoil
(1 = 3.745
2 2⋅ h'1 ca_tr
) 2π ⋅ (1 + ln 1 +
4trn ρsoil :=
str
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at numerator o% te %inal %ormula)@ .m6;
4
( ρ ) = 1.632
(
ρsoil
1 + 0.5⋅ ( λ 1a_tr ( Θms , str , !cac_tr ) + λ 1c_tr ( Θms , str , !cac_tr ) )
) 2π ⋅ ( (1) +
4trd ρsoil :=
⋅ ln 1 +
( 1 + λ 1b_tr ( Θms , str , !cac_tr ) )
2 2⋅ h'1 ca_tr
str
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at denominator o% te %inal %ormula)@ .m6;
( )
4trd ρst = 1.649
992 C%$*es in !! For 3 cable$ a/in eual $eat lo$$e$@ laid in tre%oil %ormation and eually $paced ap art
9921 Therm%* resist%nce o& $entonite $et)een c%$*e %n- +i+e
41hdd :=
ρ bntonit di pip_hdd
2π
ln
do
(ermal re$i$tance o% bentonite beteen cable and pipe@ .m6;)
41hdd = 0.1004
9922 Therm%* resist%nce o& +i+e m%teri%*
42hdd :=
ρ p do pip_hdd ln
(ermal re$i$tance o% pipe material@ .m6;)
2π di pip_hdd
42hdd = 0.0797
9923 Therm%* resist%nce o& soi* hl := *hdd − shdd⋅
bl := *hdd + shdd⋅
(land :=
3 6
)
4land ρsoil :=
hl = 7113
(urial dept o% te deep$t cable@ mm)
bl = 7307
(u i$ calculated it re%erence to te centre line o% te deepe$t duct$(non
do pip_hdd
(urial dept o% te upmo$t cable@ mm)
3
2.bl
(1land := ln (land +
(
3
(
land
2
−1
ρsoil (1 + ln 2 π land
(1land = 4.867
2 2 # 2 bl$ + ( s hdd) + ln s hdd
2 # 2 hl$ + 2 2 shdd 2 shdd
2
(
)
4land ρhdd = 2.099
9929 Tot%* Therm%* resist%nce o& c%$*e s#rro#n-in" T9
(
)
(
)
4hdd ρsoil := 41hdd + 42hdd + 4land ρsoil
9xternal ermal #e$i$tance %or current ratin calculation in @ .m6;>
(
)
4hdd ρhdd = 2.3
993 C%$*e in -#ct %t ro%- crossin" /re&erence to hottest c%$*e n3 For 3 cable$ a/in uneual $eat lo$$e$@ laid in %lat %ormation and eually $paced apart
9931 Therm%* resist%nce o& $entonite $et)een c%$*e %n- +i+e
41rc :=
ρ bntonit di pip_rc
⋅ ln
2π
do
(ermal re$i$tance o% bentonite beteen cable and pipe@ .m6;)
41rc = 0.0876
9932 Therm%* resist%nce o& +i+e m%teri%*
42rc :=
ρ p&c do pip_rc 2π
⋅ ln
(ermal re$i$tance o% bentonite beteen cable and pipe@ .m6;)
di pip_rc
42rc = 0.1006
9933 E:tern%* therm%* resist%nce o& +i+e m%teri%*
% :=
1 ⋅ ,- ⋅ 4 − 2 +,- π 2
+ 2 , 2 ,- ,- ⋅ ln 1 + + ln +,- 2 2 , 2
%
r b :=
(,- :=
(9ui/alent radiu$ o% te duct bank@ mm)
r b = 357.897
h',(,- = 3.423
r b
(
/ 2 ) 2π ⋅ ( ρsoil − ρconcrt ) ⋅ ln(,- + (,-
43_corr ρsoil :=
−1
4
(ρ )
0.182
9939 Therm%* resist%nce o& c%$*e sorro#n-in" T9
(r :=
2⋅ h'1 ca_rc
(r = 12.731
do pip_rc
(1r := ln (r +
(
)
43m ρsoil :=
2 (r − 1
(1r = 3.236
ρconcrt
2π
2 2h'1ca_rc
⋅ (1r + ln 1 +
src
+ 43_corr ( ρsoil) 9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at numerator o% te %inal %ormula)@ .m6;
( )
43m ρsr = 1.379
(
)
43rd ρsoil :=
ρconcrt
2π
⋅ (1r +
1 + 0.5⋅ ( λ 1a_rc ( Θms , src , !cac_rc) + λ 1c_rc( Θms , src, !cac_rc) )
( 1 + λ 1b_rc ( Θms , src , !cac_rc) )
⋅ ln 1 +
2⋅ h'1ca_rc 2
src
+ 43_corr ( ρsoil)
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at denominator o% te %inal %ormula)@ .m6;
( )
43rd ρsr = 1.384
993@ Tot%* Therm%* resist%nce o& c%$*e s#rro#n-in" T9
(
)
(
)
4m ρsoil := 41rc + 42rc + 43m ρsoil
9xternal termal re$i$tance %or current ratin calculation in duct bank to be u$ed at numerator o% te %inal %ormula@ .m6;)
( )
4m ρsr = 1.5677
(
)
(
)
4rc ρsoil := 41rc + 42rc + 43rd ρsoil
9xternal termal re$i$tance %or current ratin calculation in duct bank to be u$ed at te denominator o% te %inal %ormula@ .m6;)
( )
4rc ρsr = 1.5723
@ Con-#ctor Tem+er%t#re Rise %$o5e the Am$ient Tem+er%t#re Θtr := Θma% − Θc'ro(nd
(emperature ri$e o% te conductor it re$pect to te $urroundin$ o% trou@ E") Θtr = 50
Θhdd := Θma% − Θc'ro(nd
(emperature ri$e o% te conductor it re$pect to te $urroundin$ o% @ E") Θhdd = 50
Θrc := Θma% − Θc'ro(nd
(emperature ri$e o% te conductor it re$pect to te $urroundin$ o% road cro$$in@ E") Θrc = 50
; Contin#o#s C#rrent C%rrin" C%+%cit /A ;1 C%$*es in tro#"h /C#rrent %s % nction o& soi* therm%* resisti5it ρsoil := 0.8, 0.9 .. 2.3
(Variable termal re$i$ti/ity o% $oil@ .m6;)
)) I1tr ( ρsoil) := !cac_tr ⋅ 1 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd( ρsoil) )
(
)
(
(
)
P1 tr ρsoil := I1tr ρsoil U p_132⋅ 10
(
)
I1tr ρsoil =
(
Θtr − +d⋅ 0.51 + n⋅ 2 + 3 + 4trn ρsoil
ρsoil =
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
(
)
P1tr ρsoil =
1237
0.8
282.8
1183.3
0.9
270.5
1136
1
259.7
1093.8
1.1
250.1
1055.9
1.2
241.4
1021.6
1.3
233.6
990.3
1.4
226.4
961.7
1.5
219.9
935.4
1.6
213.9
911
1.7
208.3
888.4
1.8
203.1
867.3
1.9
198.3
847.7
2
193.8
829.2
2.1
189.6
811.9
2.2
185.6
795.5
2.3
181.9
( )
(A)
( )
(,VA)
I1tr ρst = 1055.9 P1 tr ρst = 241.4
2 = 22.485 +c_tr := I1tr ρst ⋅ !cac_tr
( )
(k;6km)
= 1.396 +s_tr := λ 1_tr ⋅ +c_tr
(k;6km)
+d_tr := +d = 0.49
(k;6km)
= 24.37 +total_tr := +c_tr + +s_tr + +d_tr
(k;6km)
Final /eri%ication o% te $creen6$eat temperature
(
)
(
)
Θfin_tr ρsoil := Θma% − 1⋅ !cac_tr ⋅ I1tr ρsoil
2
+
+d
2
( )
Θfin_tr ρst = 81.5 Θm_tr = 81.5
;2 C%$*es in !! /C#rrent %s % nction o& soi* therm%* resisti5it
ρsoil := 0.8, 0.9 .. 2.3
(
)
(
)
I1hdd ρsoil :=
(Variable termal re$i$ti/ity o% $oil@ .m6;)
Θhdd − +d⋅ 0.51 + n⋅ 2 + 3 + 4hdd ρsoil
!cac_hdd ⋅ 1 + n⋅!c ac_hdd ⋅ 1 + λ 1_hdd 2 + n⋅!cac_hdd ⋅ 1 + λ 1_hdd 3 + 4hdd ρsoil
(
(
(
)
P1 hdd ρsoil := I1hdd ρsoil U p_132⋅ 10
(
)
I1hdd ρsoil =
ρsoil =
)
(
))
(
)(
(
))
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
(
)
P1hdd ρsoil =
1018
0.8
232.8
973
0.9
222.5
934
1
213.4
898
1.1
205.4
867
1.2
198.1
838
1.3
191.6
812
1.4
185.6
788
1.5
180.1
766
1.6
175.1
746
1.7
170.5
727
1.8
166.1
709
1.9
162.1
693
2
158.4
677
2.1
154.8
663
2.2
151.5
649
2.3
148.4
(
)
(A)
(
)
(,VA)
I1hdd ρhdd = 933.6 P1 hdd ρhdd = 213.4
2 = 17.558 +c_hdd := I1hdd ρhdd ⋅ !cac_hdd
(k;6km)
= 0.527 +s_hdd := λ 1_hdd ⋅ +c_hdd
(k;6km)
+d_hdd := +d = 0.49
(k;6km)
(
)
= 18.57 (k;6km) +total_hdd := +c_hdd + +s_hdd + +d_hdd
Final /eri%ication o% te $creen6$eat temperature
(
)
(
)
Θfin_hdd ρsoil := Θma% − 1⋅ !cac_hdd ⋅ I1hdd ρsoil
(
2
+
+d
2
)
Θfin_tr ρhdd = 80.1 Θm_hdd = 80
;3 C%$*es in -#cts %t ro%- crossin" /C#rrent %s % nction o& soi* therm%* resisti5it
ρsoil := 0.8, 0.9 .. 2.3
(Variable termal re$i$ti/ity o% $oil@ .m6;)
)) I1rc( ρsoil) := !cac_rc⋅ 1 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) 2 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) ( 3 + 4rc( ρsoil) )
(
)
(
(
)
P1 rc ρsoil := I1rc ρsoil U p_132⋅ 10
(
)
I1rc ρ soil =
(
Θrc − +d⋅ 0.51 + n⋅ 2 + 3 + 4m ρsoil
ρsoil =
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
(
)
P1rc ρsoil =
1208
0.8
276.3
1175
0.9
268.7
1145
1
261.8
1117
1.1
255.3
1090
1.2
249.3
1066
1.3
243.7
1043
1.4
238.4
1021
1.5
233.5
1001
1.6
228.8
982
1.7
224.5
964
1.8
220.3
946
1.9
216.4
930
2
212.6
914
2.1
209
899
2.2
205.6
885
2.3
202.4
( )
(A)
( )
(,VA)
I1rc ρsr = 1090 P1 rc ρsr = 249.3
2 = 15.099 +c_rc := I1hdd ρsr ⋅ !cac_rc
( )
= 0.497 +s_rc := λ 1_rc⋅ +c_rc +d_rc := +d = 0.49
= 16.09 +total_rc := +c_rc + +s_rc + +d_rc
Final /eri%ication o% te $creen6$eat temperature
(
)
(
)
Θfin_rc ρsoil := Θma% − 1⋅ !cac_rc ⋅ I1rc ρsoil
2
+d
+
2
( )
Θfin_rc ρsr = 80.9 Θm_rc = 80.5
= Re-#ction 4%ctors =1 R41 C%$*es in tro#"h &or 5%rio#s !e+ths %n- L%in" 6 di$tance %rom round $ur%ace to cable axi$ h'ca := 600 , 700 .. 2000
(Variable i$tance$ o% "able$ %rom round $ur%ace@ mm)
# 2.hr $
(t_!1# hr $ :=
do
2 (t_!1# hr $ − 1
(1t_!1# hr $ := ln (t_!1# hr $ +
(
)
4trn_!1 ρsoil , hr :=
(
)
4trd_!1 ρsoil , hr :=
ρsoil
2 2 ⋅ hr # hr $ + ln 1 +
⋅ (1t_!1
2 π
str
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at numerator o% te %inal %ormula)@ .m6;
ρsoil
1 + 0.5⋅ ( λ 1a_tr ( Θms , str , !cac_tr ) + λ 1c_tr ( Θms , str , !cac_tr ) )
2 π
⋅ (1t_!1# hr $ +
( 1 + λ 1b_tr ( Θms , str , !cac_tr ) )
2⋅ hr ⋅ ln 1 +
2
str
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at denominator o% te %inal %ormula)@ .m6;
( )) I1tr_!1( ρsoil , hr ) := !cac_tr ⋅ 1 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd_!1( ρsoil, hr ) )
(
)
(
Θtr − +d⋅ 0.51 + n⋅ 2 + 3 + 4trn_!1 ρsoil , hr
(
)
P1 tr_!1 ρsoil , hr := I1tr_!1 ρsoil , hr U p_132⋅ 10
(
)
!1 ρsoil hr :=
I1tr_!1( ρsoil , hr )
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
h'ca =
(
)
!1t ρst , h'ca =
(
)
I1tr_!1 ρst , h'ca =
(
)
1600
1800
P1tr_!1 ρst , h'ca =
600
1.099
1160
265
700
1.071
1131
259
800
1.048
1107
253
900
1.03
1087
249
1000
1.014
1070
245
1100
1
1056
241
1200
0.988
1043
238
1300
0.977
1031
236
1400
0.967
1021
233
1500
0.958
1012
231
1600
0.95
1003
229
1700
0.943
995
228
1800
0.936
988
226
1900
0.929
981
224
2000
0.923
975
223
270
A = 257.5 < : r ; o P P1 n tr_!1 ( ρ st , h'ca) 245 o i s s i m s n 232.5 a r 7 220 600
800
1000
1200
1400 h'ca
abl *ain' dpth: mm
2000
=2 R42 C%$*es in !! crossin" &or 5%rio#s !e+ths %n- L%in" 6 di$tance %rom round $ur%ace to cable axi$ h'ca := 3500 , 4000.. 15000
hl_!2# hr $ := hr − s hdd⋅
bl_!2# hr $ := hr + s hdd⋅
(!2# hr $ :=
(Variable i$tance$ o% "able$ %rom round $ur%ace@ mm)
3
(urial dept o% te upmo$t cable@ mm)
3 3
(urial dept o% te deep$t cable@ mm)
6
2. bl_!2# hr $
(u#F2 i$ calculated it re%erence to te centre line o% te deepe$t
do pip_hdd
duct$(non
(1c_!2# hr $ := ln (!2# hr $ +
(
)
43c_!2 ρsoil , hr :=
(
(
!2# hr $
2
ρsoil ( # hr $ + ln 2 π 1c_!2
)
−1
2 2 # 2 bl_!2# hr $ $ + ( s hdd) + ln s hdd
(
2 # 2 hl_!2# hr $ $ + 2 2 shdd 2 # bl_!2# hr $ − hl_!2# hr $ $ + 2 shdd
2
)
4c_!2 ρsoil , hr := 41hdd + 42hdd + 43c_!2 ρsoil , hr
9xternal ermal #e$i$tance %or current ratin calculation in @ .m6;>
(
)
4hdd ρhdd = 2.3
(
)
(
)
I1hdd_!2 ρsoil , hr :=
Θhdd − +d⋅ 0.51 + n⋅ 2 + 3 + 4c_!2 ρsoil , hr
!cac_hdd ⋅ 1 + n⋅!cac_hdd ⋅ 1 + λ 1_hdd 2 + n⋅!c ac_hdd ⋅ 1 + λ 1_hdd 3 + 4c_!2 ρsoil , hr
(
(
(
)
P1 hdd_!2 ρsoil , hr := I1hdd_!2 ρsoil , hr U p_132⋅ 10
(
)
!2t ρsoil , hr :=
I1hdd_!2 ( ρsoil, hr )
(
)
I1hdd ρhdd
)
(
(
)(
−6
⋅ 3
))
(ran$mi$$ion 5oer in ,VA)
(
))
h'ca =
(
)
!2t ρhdd , h'ca =
(
)
(
)
I1hdd_!2 ρhdd , h'ca = P1hdd_!2 ρhdd , h'ca =
3500
1.073
1002
229
4000
1.059
988
226
4500
1.046
977
223
5000
1.035
967
221
5500
1.026
958
219
6000
1.018
950
217
6500
1.01
943
216
7000
1.003
937
214
7500
0.997
931
213
8000
0.991
925
212
8500
0.986
920
210
9000
0.981
916
209
9500
0.976
911
208
10000
0.972
907
207
10500
0.968
904
207
11000
0.964
900
206
11500
0.96
897
205
12000
0.957
893
204
12500
0.954
890
204
13000
0.951
887
203
13500
0.948
885
202
14000
0.945
882
202
14500
0.942
880
201
15000
0.94
877
201
230
A = 222.5 < : r ; o P P1 n hdd_!2 ( ρ hdd , h'ca) 215 o i s s i m s n 207.5 a r 7 200 3500
5142.9
6785.7
8428.6
10071.4 h'ca
11714.3
13357.1
15000
=3 R43 C%$*es in -#ct$%nk &or ro%- crossin" &or 5%rio#s !e+ths %n- L%in" 6 di$tance %rom round $ur%ace to cable axi$ h'ca := 600 , 700 .. 2000
do
2
∆h',-# hr $ := hr +
(,-_!3 # hr $ :=
(Variable i$tance$ o% "able$ %rom round $ur%ace@ mm)
,-
2
+ t pip_rc − do pip_rc − 200 +
∆h',-# hr $ r b
2 / ) 2π ⋅ ( ρsoil − ρconcrt ) ⋅ ln(,-_!3 # hr $ + (,-_!3 # hr $ − 1
(
4r_corr_!3 ρsoil , hr :=
(rc_!3# hr $ :=
2 hr do pip_rc
(1rc_!3 # hr $ := ln (rc_!3# hr $ +
(
ρconcrt
)
43rn_!3 ρsoil , hr :=
2 (rc_!3# hr $ − 1
2π
⋅ (1rc_!3
2 2 ⋅ hr # hr $ + ln 1 + + 4
str
(
)
r_corr_!3 ρsoil , hr
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at numerator o% te %inal %ormula)@ .m6;
(
ρconcrt
)
43rd_!3 ρsoil , hr :=
2π
⋅ (1rc_!3 # hr $ +
+ 4r_corr_!3 ( ρsoil, hr )
1 + 0.5⋅ ( λ 1a_rc ( Θms , src , !cac_rc) + λ 1c_rc ( Θms , src, !cac_rc) )
2 2 ⋅ hr ⋅ ln 1 + ...
( 1 + λ 1b_rc ( Θms, src, !cac_rc) )
str
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at denominator o% te %inal %ormula)@ .m6;
(
)
(
)
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at numerator o% te %inal %ormula)@ .m6;
(
)
(
)
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at denominator o% te %inal %ormula)@ .m6;
4rn_!3 ρsoil , hr := 41rc + 42rc + 43rn_!3 ρsoil , hr
4rd_!3 ρsoil , hr := 41rc + 42rc + 43rd_!3 ρsoil , hr
(
)
I1rc_!3 ρsoil , hr :=
(
(
))
Θrc − +d⋅ 0.51 + n⋅ 2 + 3 + 4rn_!3 ρsoil , hr !c
1
n !c
(1
λ
) 2
!c
(1
λ
) ( 3
4
(
))
hr
(
)
(
)
P1 rc_!3 ρsoil , hr := I1rc_!3 ρsoil , hr U p_132⋅ 10
(
)
!3t ρsoil , hr :=
h'ca =
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
I1rc_!3( ρsoil, hr )
( )
I1rc ρsr
(
)
!3t ρsr , h'ca =
(
)
I1rc_!3 ρsr , h'ca =
(
)
1600
1800
P1rc_!3 ρsr , h'ca =
600
1.093
1192
273
700
1.063
1159
265
800
1.04
1134
259
900
1.02
1112
254
1000
1.004
1094
250
1100
0.989
1079
247
1200
0.977
1065
244
1300
0.966
1053
241
1400
0.956
1043
238
1500
0.947
1033
236
1600
0.939
1024
234
1700
0.932
1016
232
1800
0.925
1009
231
1900
0.918
1002
229
2000
0.913
995
228
275
A = 263 < : r ; o P P1 ρ , h' n rc_!3( sr ca) 251 o i s s i m s n 239 a r 7 227 600
800
1000
1200
1400 h'ca
2000
=9 R49 C%$*es in tro#"h &or &or 5%rio#s "ro#n- tem+er%t#res Θ'ro(nd := 30 , 31 .. 50
(
)
Θ!4 Θ'ro(nd := Θma% − Θ'ro(nd
( )) ⋅ n p I1c_!4( ρsoil , Θ'ro(nd ) := !cac_tr ⋅ 1 + n⋅!c ac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd( ρsoil) )
(
)
(
)
(
)
P1 c_!4 ρsoil , Θ'ro(nd := I1c_!4 ρsoil , Θ'ro(nd U p_132⋅ 10
(
)
!4c ρsoil , Θ'ro(nd :=
Θ'ro(nd =
(
Θ!4 Θ'ro(nd − +d⋅ 0.51 + n⋅ 2 + 3 + 4trn ρsoil
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
I1c_!4( ρsoil, Θ'ro(nd)
( )
I1rc ρst
(
)
(
)
(
)
!4c ρst , Θ'ro(nd = I1c_!4 ρst , Θ'ro(nd = P1c_!4 ρst , Θ'ro(nd =
30
1.062
1158
265
31
1.053
1149
263
32
1.044
1139
260
33
1.035
1129
258
34
1.026
1119
256
35
1.016
1108
253
36
1.007
1098
251
37
0.997
1088
249
38
0.988
1077
246
39
0.978
1067
244
40
0.968
1056
241
41
0.958
1045
239
42
0.948
1034
236
43
0.938
1023
234
44
0.928
1012
231
45
0.918
1001
229
46
0.907
989
226
47
0.897
978
224
48
0.886
966
221
49
0.875
954
218
=@ R4@ C%$*es in !! crossin" &or &or 5%rio#s "ro#n- tem+er%t#res Θsoil := 20 , 21 .. 40
(
)
Θ!5 Θsoil := Θma% − Θsoil
)) I1c_!5( ρsoil , Θsoil) := n p !cac_hdd ⋅ 1 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd ) 2 + n⋅!c ac_hdd ⋅ ( 1 + λ 1_hdd ) ( 3 + 4hdd( ρsoil) )
(
(
)
)
(
)
P1 c_!5 ρsoil , Θsoil := I1c_!5 ρsoil , Θsoil U p_132⋅ 10
(
)
!5c ρsoil , Θsoil :=
Θsoil =
(
(
Θ!5 Θsoil − +d⋅ 0.51 + n⋅ 2 + 3 + 4hdd ρsoil
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
I1c_!5( ρsoil , Θsoil)
(
)
I1hdd ρhdd
(
)
!5c ρhdd , Θsoil =
(
)
I1c_!5 ρhdd , Θsoil =
(
)
P1c_!5 ρhdd , Θsoil =
20
1.187
1109
253
21
1.179
1101
252
22
1.17
1092
250
23
1.161
1084
248
24
1.152
1076
246
25
1.144
1068
244
26
1.135
1059
242
27
1.125
1051
240
28
1.116
1042
238
29
1.107
1034
236
30
1.098
1025
234
31
1.088
1016
232
32
1.079
1007
230
33
1.069
998
228
34
1.06
989
226
35
1.05
980
224
36
1.04
971
222
37
1.03
962
220
38
1.02
953
218
39
1.01
943
216
=; R4; C%$*es in !#ct $%nk %t ro%- crossin" &or &or 5%rio#s "ro#n- tem+er%t#res Θ'ro(nd := 30 , 31 .. 50
(
)
Θ!6 Θ'ro(nd := Θma% − Θ'ro(nd
( )) ⋅ n p I1c_!6( ρsoil , Θ'ro(nd ) := !cac_rc⋅ 1 + n⋅!cac_rc ⋅ ( 1 + λ 1_rc) 2 + n⋅!c ac_rc⋅ ( 1 + λ 1_rc) ( 3 + 4rc( ρsoil) )
(
(
)
)
(
)
P1c_!6 ρsoil , Θ'ro(nd := I1c_!6 ρsoil , Θ'ro(nd U p_132⋅ 10
(
)
!6c ρsoil , Θ'ro(nd :=
Θ'ro(nd =
(
Θ!6 Θ'ro(nd − +d⋅ 0.51 + n⋅ 2 2 + 3 + 4m ρsoil
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
I1c_!6( ρsoil, Θ'ro(nd)
( )
I1rc ρsr
(
)
(
)
(
)
!6c ρsr , Θ'ro(nd = I1c_!6 ρsr , Θ'ro(nd = P1c_!6 ρsr , Θ'ro(nd =
30
1.097
1196
274
31
1.088
1186
271
32
1.078
1176
269
33
1.069
1166
266
34
1.059
1155
264
35
1.05
1145
262
36
1.04
1134
259
37
1.03
1123
257
38
1.02
1112
254
39
1.01
1102
252
40
1
1090
249
41
0.99
1079
247
42
0.979
1068
244
43
0.969
1057
242
44
0.958
1045
239
45
0.948
1033
236
46
0.937
1022
234
47
0.926
1010
231
48
0.915
998
228
49
0.904
986
225
50
0.892
973
222
== R4= C%$*es in tro#"h t ro#"h &or &or 5%rio#s c%$*e se+%r%tion s ca := 200 , 250 .. 600
(t_!7 :=
( 2.h'1ca_tr ) do
(1t_!7 := ln (t_!7 +
(
)
4trn_!7 ρsoil , s :=
(
)
4trd_!7 ρsoil , s :=
2 (t_!7 − 1
ρsoil
2π
ρsoil
1 + 0.5⋅ ( λ 1a_tr ( Θms , str , !cac_tr ) + λ 1c_tr ( Θms , str , !cac_tr ) )
⋅ (1t_!7 + ln 1 +
2π
⋅ ( (1t_!7) +
2 2⋅ h'1 ca_tr
s
(
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at numerator o% te %inal %ormula)@ .m6;
(
))
1 + λ 1b_tr Θms , str , !cac_tr
⋅ ln 1 +
2 2⋅ h'1ca_tr
s
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at denominator o% te %inal %ormula)@ .m6;
( )) I1c_!7( ρsoil , s) := !cac_tr ⋅ 1 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd_!7( ρsoil , s) )
(
)
(
Θtr − +d⋅ 0.51 + n⋅ 2 2 + 3 + 4trn_!7 ρsoil , s
(
)
P1c_!7 ρsoil , s := I1c_!7 ρsoil , s U p_132⋅ 10
(
)
!7c ρsoil , s :=
s ca =
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
I1c_!7( ρsoil, s)
( )
(
)
I1tr ρst
!7c ρst , sca =
(
)
I1c_!7 ρst , sca =
(
)
P1c_!7 ρst , sca =
200
1
1056
241
250
1.022
1079
247
300
1.041
1099
251
350
1.058
1117
255
400
1.073
1133
259
450
1.087
1147
262
500
1.099
1161
265
550
1.111
1173
268
600
1.122
1184
271
< Mirror +rinci+*e %++*ie- &or +%r%**e* #ne#%** *o%-e- c%$*e circ#its /(#+er +osition <1 C%$*es in tro#"h $et)een 132 132 kV Br#"" Circ#it %n- 2 Circ#its Circ#its 900 kV Visc%s
Pa_400 := 100 , 200 .. 1200
,%02_%1 :=
(Variable loadin o% parallel runnin 400 kV cable@ ,VA)
( ,400b_132_tr + 400_tr )
2
+ ( h'1ca_tr − h'400_tr )
2
(di$tance beteen ?02 and ?1@ mm) 3 5.500 × 10 ,%02_%1 = 5.500
,%02_%1m :=
( ,400b_132_tr + 400_tr )
2
+ ( h'1ca_tr + h'400_tr )
2
(di$tance beteen ?02 and mirror imae ?1@ mm) 3 5.923 × 10 ,%02_%1m = 5.923
,%02_%2 :=
( ,400b_132_tr )
2
+ ( h'1ca_tr − h'400_tr )
2
(di$tance beteen ?02 and ?2@ mm) 3 4.900 × 10 ,%02_%2 = 4.900
,%02_%2m :=
( ,400b_132_tr )
2
+ ( h'1ca_tr + h'400_tr )
2
(di$tance beteen ?02 and mirror imae ?2@ mm) ,
3
5.370 5.370 10
( ,400b_132_tr − 400_tr )
, %02_%3 :=
2
+ ( h'1ca_tr − h'400_tr )
2
(di$tance beteen ?02 and ?3@ mm) 3 , %02_%3 = 4.300 × 10
( ,400b_132_tr − 400_tr )
, %02_%3m :=
2
+ ( h'1ca_tr + h'400_tr )
2
(di$tance beteen ?02 and mirror imae ?3@ mm) 3 , %02_%3m = 4.829 × 10
( ,400a_132_tr + 400_tr )
, %02_%4 :=
2
+ ( h'1ca_tr − h'400_tr )
2
(di$tance beteen ?02 and ?4@ mm) 3 , %02_%4 = 2.700 × 10
( ,400a_132_tr + 400_tr )
, %02_%4m :=
2
+ ( h'1ca_tr + h'400_tr )
2
(di$tance beteen ?02 and mirror imae ?4@ mm) 3 , %02_%4m = 3.482 × 10
( ,400a_132_tr )
, %02_%5 :=
2
+ ( h'1ca_tr − h'400_tr )
2
(di$tance beteen ?02 and ?+@ mm) 3 , %02_%5 = 2.100 × 10
( ,400a_132_tr )
, %02_%5m :=
2
+ ( h'1ca_tr + h'400_tr )
2
(di$tance beteen ?02 and mirror imae ?+@ mm) 3 , %02_%5m = 3.040 × 10
( ,400a_132_tr − 400_tr )
, %02_%6 :=
2
( ,400a_132_tr − 400_tr )
, %02_%6m :=
+ ( h'1ca_tr − h'400_tr ) 2
2
+ ( h'1ca_tr + h'400_tr )
(di$tance beteen ?02 and ?@ mm) 2
3 , %02_%6 = 1.500 × 10
(di$tance beteen ?02 and ?@ mm) 3 , %02_%6m = 2.661 × 10
I400tr # P$ :=
# P⋅ 1000$
(
("urrent in te 400 kV circuit a$ a %unction o% te tran$mitted poer@ A)
3⋅ 400)
(
)
1591 I400tr P400tr =
(
)
+400_atr # P$ := ! A_400_tr ⋅ 1 + λ 1a_tr_400 ⋅ I400tr # P$
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e a circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m)
(
)
+400_atr P400tr = 27.911
(
)
+400_btr # P$ := ! A_400_tr ⋅ 1 + λ 1b_tr_400 ⋅ I400tr # P$
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e b circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m)
(
)
+400_btr P400tr = 27.182
(
)
+400_ctr # P$ := ! A_400_tr ⋅ 1 + λ 1c_tr_400 ⋅ I400tr # P$
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e c circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m)
(
)
∆Θ%02_%1 ρsoil , P :=
(
)
∆Θ%02_%2 ρsoil , P :=
(
)
∆Θ%02_%3 ρsoil , P :=
(
)
∆Θ%02_%4 ρsoil , P :=
(
)
∆Θ%02_%5 ρsoil , P :=
(
)
∆Θ%02_%6 ρsoil , P :=
1 2π
1 2π
1 2π
1 2π
1 2π
1 2π
(
,%02_%1m
⋅ ρsoil⋅ +400_atr # P$ ⋅ ln
,%02_%1 ,%02_%2m
⋅ ρsoil⋅ +400_btr # P$ ⋅ ln
,%02_%2
,%02_%3m
⋅ ρsoil⋅ +400_ctr # P$ ⋅ ln
,%02_%3 ,%02_%4m
⋅ ρsoil⋅ +400_atr # P$ ⋅ ln
,%02_%4 ,%02_%5m
⋅ ρsoil⋅ +400_btr # P$ ⋅ ln
,%02_%5
,%02_%6m
⋅ ρsoil⋅ +400_ctr # P$ ⋅ ln
,%02_%6
)
(
)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
(
)
(
)
(
)
∆ΘPtr ρsoil , P := ∆Θ%02_%1 ρsoil , P + ∆Θ%02_%2 ρsoil , P + ∆Θ%02_%3 ρsoil , P + ∆Θ%02_%4 ρsoil , P ... + ∆Θ%02_%5 ρ soil , P + ∆Θ%02_%6 ρsoil, P
(
)
(
)
(otal ri$e abo/e ambient temperature at te $ur%ace o% te ?02 cable@ o$e ratin i$ bein determined@ cau$ed by te poer di$$pated by te oter cable$ in roup)
( Θtr − ∆ΘPtr ( ρsoil , P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4trn( ρsoil) ) ) !cac_tr ⋅ 1 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd( ρsoil) )
(
I1132_400tr ρsoil , P :=
(
)
P1132_400tr ρsoil , P :=
(
)
(
)(
(
3 ⋅ 132)
I1132_400tr ρsoil , P ⋅
1000
(
!4tr ρsoil , P := !4c ρsoil , Θc'ro(nd + ∆ΘPtr ρsoil , P
))
(#eduction Factor due to 400 kV circuit)
(
Pa_400 =
)
(
I400tr Pa_400 =
)
∆ΘPtr ρst , Pa_400 =
(
!4tr ρst , Pa_400
)
(
=
I1132_400tr ρst , Pa_400
100
144
0.37
0.965
1052
200
289
0.55
0.963
1050
300
433
0.85
0.96
1047
400
577
1.28
0.956
1042
500
722
1.83
0.95
1036
600
866
2.5
0.943
1029
700
1010
3.3
0.935
1020
800
1155
4.21
0.926
1010
900
1299
5.25
0.915
998
1000
1443
6.41
0.903
985
1100
1588
7.69
0.889
970
1200
1732
9.1
0.874
953
)
=
0.97
r t 4 8 ! : r o t c a 8 n o i t c ( d !
0.95
(
)
I1132_400tr ρst , P400tr = 969 0.93
(
!4tr ρst , P a_400
(
) 0.92
0.9
0.88 100
283.3
466.7
650
833.3
P a_400
ransmission Po;r: <=A 2 = 18.947 +c_tr_final := I1132_400tr ρst , P400tr ⋅ !cac_tr
(
)
+s_tr_final := λ 1_tr ⋅ +c_tr_final = 1.176 +d_tr_final := +d = 0.49
)
P1 132_400tr ρsr , P400tr = 222
1016.7
1200
(A)
(,VA)
<2 C%$*es in !! $et)een 132 kV Br#"" Circ#it %n- 900 kV Visc%s Circ#it
hl = 7113
(urial dept o% te upmo$t 132 kV cable@ mm)
bl = 7307
(urial dept o% te deep$t 132 kV cable@ mm)
P b_400 := 50 , 100 .. 600
(Variable loadin o% parallel runnin 400 kV cable@ ,VA)
,02_1 :=
,400b_132_hdd −
shdd
2
2
+ ( bl − hl400)
2
(di$tance beteen =02 and =1@ mm) 3 , 02_1 = 5.890 × 10
,02_1m :=
,400b_132_hdd −
s hdd
2
2
+ ( bl + bl400)
2
(di$tance beteen =02 and mirror imae =1@ mm)
,02_2 :=
,02_2m :=
,02_3 :=
,02_3m :=
,02_4 :=
,02_4m :=
,02_5 :=
shdd
2
,400b_132_hdd −
+
s hdd
2
,400b_132_hdd −
shdd
2
,400b_132_hdd −
s hdd
2
,400a_132_hdd −
shdd
2
,400a_132_hdd −
shdd
2
2
+ ( bl + bl400)
2
(di$tance beteen =02 and mirror imae =2@ mm) 3 , 02_2m = 15.953 × 10
+ ( bl400 − bl)
2
(di$tance beteen =02 and =3@ mm) 3 , 02_3 = 5.750 × 10
400_hdd
2
+ ( bl + bl400)
2
(di$tance beteen =02 and mirror imae =3@ mm) 3 , 02_3m = 15.849 × 10
2
+ ( bl − hl400)
2
(di$tance beteen =02 and =2@ mm)
2
2
2 3 , 02_2 = 6.030 × 10
2
2
−
+ ( bl400 − bl)
400_hdd
400_hdd
(di$tance beteen =02 and =4@ mm)
2
+ ( bl + bl400)
+
2 3 , 02_4 = 2.892 × 10
shdd
, − 400a_132_hdd
+
2
2
−
,400b_132_hdd −
400_hdd
2
(di$tance beteen =02 and mirror imae =4@ mm) 3 , 02_4m = 15.050 × 10
400_hdd
2
+ ( hl400 − bl)
2
2
(di$tance beteen =02 and =+@ mm) 3 , 02_5 = 3.032 × 10
,02_5m :=
shdd
2
,400a_132_hdd −
+
400_hdd
2
2
+ ( bl + hl400)
2
(di$tance beteen =02 and mirror imae =+@ mm) 3 , 02_5m = 14.761 × 10
,02_6 :=
,02_6m :=
shdd
2
,400a_132_hdd −
−
shdd
2
,400a_132_hdd −
400_hdd
2
−
2
400_hdd
2
+ ( bl400 − bl)
2
(di$tance beteen =02 and =@ mm) 3 , 02_6 = 2.752 × 10
2
+ ( bl + bl400)
2
(di$tance beteen ?02 and ?@ mm) 3
I400hdd# P$ :=
# P⋅ 1000$
(
("urrent in te 400 kV circuit a$ a %unction o% te tran$mitted poer@ A)
3 ⋅ 400)
(
)
I400tr P400hdd = 820
)
(
+400_hdd # P$ := ! A_400_hdd ⋅ 1 + λ 1_hdd_400 ⋅ I400hdd # P$
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e a circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m)
(
)
+400_hdd P400hdd = 8.292
(
1
)
∆Θ02_1 ρsoil , P :=
(
2π
1
)
∆Θ02_2 ρsoil , P :=
(
2π
1
)
∆Θ02_3 ρsoil , P :=
(
2π
1
)
∆Θ02_4 ρsoil , P :=
(
2π
1
)
∆Θ02_5 ρsoil , P :=
(
2π
1
)
∆Θ02_6 ρsoil , P :=
2π
,02_1m
⋅ ρsoil⋅ +400_hdd # P$ ⋅ ln
,02_1 ,02_2m
⋅ ρsoil⋅ +400_hdd # P$ ⋅ ln
,02_2 ,02_3m
⋅ ρsoil⋅ +400_hdd # P$ ⋅ ln
,02_3 ,02_4m
⋅ ρsoil⋅ +400_hdd # P$ ⋅ ln
,02_4 ,02_5m
⋅ ρsoil⋅ +400_hdd # P$ ⋅ ln
,02_5 ,02_6m
⋅ ρsoil⋅ +400_hdd # P$ ⋅ ln
,02_6
(
)
(
)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% %urte$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% %urte$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% %urte$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable y02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable =02)
(
)
(
)
(
)
∆ΘPhdd ρsoil , P := ∆Θ02_1 ρsoil , P + ∆Θ02_2 ρsoil , P + ∆Θ02_3 ρsoil , P + ∆Θ02_4 ρsoil , P ... + ∆Θ02_5 ρsoil, P + ∆Θ02_6 ρsoil , P
(
)
(
)
(otal ri$e abo/e ambient temperature at te $ur%ace o% te =02 cable@ o$e ratin i$ bein determined@ cau$ed by te poer di$$pated by te oter cable$ in roup)
( Θhdd − ∆ΘPhdd( ρsoil , P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4hdd( ρsoil) ) ) !cac_hdd ⋅ 1 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd) 2 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd) ( 3 + 4hdd( ρsoil) )
Θ'ro(nd := 30 , 31 .. 50 I1132_400hdd ρsoil , P :=
(
(
)
P1132_400hdd ρsoil , P :=
(
)(
I1132_400hdd ρsoil , P ⋅
1000
3 ⋅ 132)
(
P b_400 =
)
I400hdd P b_400 =
(
)
∆ΘPhdd ρhdd , P b_400 =
(
)
!5hdd ρhdd , P b_400 =
(
)
I1132_400hdd ρhdd , P b_400 =
50
72
1.43
0.985
920
100
144
1.64
0.983
918
150
217
1.99
0.979
914
200
289
2.49
0.974
910
250
361
3.12
0.967
903
300
433
3.89
0.959
896
350
505
4.81
0.949
886
400
577
5.86
0.938
876
450
650
7.06
0.925
863
500
722
8.39
0.91
849
550
794
9.87
0.893
834
600
866
11.49
0.874
816
0.99
d d h 5 8 ! : r o t c a 8 n o i t c ( d !
0.97
(
)
(
)
I1132_400hdd ρhdd , P400hdd = 828 (A) P1 132_400hdd ρhdd , P400hdd = 189 (,VA)
0.94
(
!5hdd ρ hdd , P b_400
) 0.92
0.89
0.87 50
141.7
233.3
325
416.7
P b_400
ransmission Po;r: <=A
(
+c_hdd_final := I1132_400hdd ρ hdd , P400hdd
)
= 0.414 +s_hdd_final := λ 1_hdd ⋅ +c_hdd_final +d_hdd_final := +d = 0.49
2
⋅ !cac_hdd = 13.799
508.3
600
<3 Ro%- crossin" -#ct$%nks $et)een 132 kV Br#"" Circ#it %n- 2 Circ#its 900 kV Visc%s
Pc_400 := 100 , 150 .. 800
, "02_"1 :=
(Variable loadin o% parallel runnin 400 kV cable@ ,VA)
( ,400b_132_rc + 400_rc )
2
+ ( h'1ca_rc − h'400_rc )
2
(di$tance beteen 02 and 1@ mm) 3 , "02_"1 = 5.201 × 10
, "02_"1m :=
( ,400b_132_rc + 400_rc )
2
+ ( h'1ca_rc + h'400_rc )
2
(di$tance beteen 02 and mirror imae 1@ mm) 3 , "02_"1m = 5.824 × 10
, "02_"2 :=
( ,400b_132_rc )
2
+ ( h'1ca_rc − h'400_rc )
2
(di$tance beteen 02 and 2@ mm) 3 , "02_"2 = 4.901 × 10
, "02_"2m :=
( ,400b_132_rc )
2
+ ( h'1ca_rc + h'400_rc )
2
(di$tance beteen 02 and mirror imae 2@ mm) 3 , "02_"2m = 5.558 × 10
, "02_"3 :=
( ,400b_132_rc − 400_rc )
2
+ ( h'1ca_rc − h'400_rc )
2
(di$tance beteen 02 and 3@ mm)
( ,400b_132_rc − 400_rc )
, "02_"3m :=
2
+ ( h'1ca_rc + h'400_rc )
2
(di$tance beteen 02 and mirror imae 3@ mm) 3 , "02_"3m = 5.295 × 10
( ,400a_132_rc + 400_rc )
, "02_"4 :=
2
+ ( h'1ca_rc − h'400_rc )
2
(di$tance beteen 02 and 4@ mm) 3 , "02_"4 = 2.401 × 10
( ,400a_132_rc + 400_rc )
, "02_"4m :=
2
+ ( h'1ca_rc + h'400_rc )
2
(di$tance beteen 02 and mirror imae 4@ mm) 3 , "02_"4m = 3.555 × 10
( ,400a_132_rc )
, "02_"5 :=
2
+ ( h'1ca_rc − h'400_rc )
2
(di$tance beteen 02 and +@ mm) 3 , "02_"5 = 2.101 × 10
( ,400a_132_rc )
, "02_"5m :=
2
+ ( h'1ca_rc + h'400_rc )
2
(di$tance beteen 02 and mirror imae +@ mm) 3 , "02_"5m = 3.360 × 10
( ,400a_132_rc − 400_rc )
, "02_"6 :=
2
+ ( h'1ca_rc − h'400_rc )
2
(di$tance beteen 02 and @ mm) 3 , "02_"6 = 1.802 × 10
( ,400a_132_rc − 400_rc )
, "02_"6m :=
2
+ ( h'1ca_rc + h'400_rc )
2
(di$tance beteen 02 and @ mm) 3 , "02_"6m = 3.181 × 10
I400rc # P$ :=
# P⋅ 1000$
(
("urrent in te 400 kV circuit a$ a %unction o% te tran$mitted poer@ A)
3 ⋅ 400)
(
)
I400rc P400rc = 1155
(
)
+400_arc # P$ := ! A_400_rc ⋅ 1 + λ 1a_rc_400 ⋅ I400rc # P$
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e a circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m)
(
)
+400_arc P400rc = 15.209
(
)
+400_brc # P$ := ! A_400_rc ⋅ 1 + λ 1b_rc_400 ⋅ I400rc # P$
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e b circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m)
(
)
+400_brc P400rc = 14.827
(
)
+400_crc # P$ := ! A_400_rc ⋅ 1 + λ 1c_rc_400 ⋅ I400rc # P$
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e c circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m)
(
)
+400_crc P400rc = 14.822
(
)
∆Θ"02_"1 ρsoil , P :=
(
)
∆Θ"02_"2 ρsoil , P :=
(
)
∆Θ"02_"3 ρsoil , P :=
(
)
∆Θ"02_"4 ρsoil , P :=
(
)
∆Θ"02_"5 ρsoil , P :=
(
)
∆Θ"02_"6 ρsoil , P :=
,"02_"1m
1 2π
⋅ ρsoil⋅ +400_arc # P$ ⋅ ln
,"02_"1
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% %urte$t 400 kV circuit and di$$pated in cable 02)
,"02_"2m (emperature ri$e at te $ur%ace o% cable p roduced by te poer
1 2π
⋅ ρsoil⋅ +400_brc # P$ ⋅ ln
,"02_"2
,"02_"3m
1 2π
⋅ ρsoil⋅ +400_crc # P$ ⋅ ln
,"02_"3 ,"02_"4m
1 2π
⋅ ρsoil⋅ +400_arc # P$ ⋅ ln
,"02_"4
o% %urte$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% %urte$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable 02)
,"02_"5m (emperature ri$e at te $ur%ace o% cable p roduced by te poer
1 2π
⋅ ρsoil⋅ +400_brc # P$ ⋅ ln
,"02_"5
,"02_"6m
1 2π
⋅ ρsoil⋅ +400_crc # P$ ⋅ ln
(
,"02_"6
)
(
)
o% clo$e$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable p roduced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable 02)
(
)
(
)
(
)
∆ΘPrc ρsoil , P := ∆Θ"02_"1 ρsoil , P + ∆Θ"02_"2 ρsoil , P + ∆Θ"02_"3 ρsoil , P + ∆Θ"02_"4 ρsoil , P ... + ∆Θ"02_"5 ρsoil , P + ∆Θ"02_"6 ρsoil , P
(
)
(
)
(otal ri$e abo/e ambient temperature at te $ur%ace o% te 02 cable@ o$e ratin i$ bein determined@ cau$ed by te poer di$$pated by te oter cable$ in roup)
( Θrc − ∆ΘPrc( ρsoil, P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4m( ρsoil) ) ) !cac_rc⋅ 1 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) 2 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) ( 3 + 4rc( ρsoil) )
(
I1132_400rc ρsoil , P :=
(
)
P1132_400rc ρsoil , P :=
(
)
(
)(
(
3 ⋅ 132)
I1132_400rc ρsoil , P ⋅
1000
(
!6rc ρsoil , P := !6c ρsoil , Θc'ro(nd + ∆ΘPrc ρsoil , P
))
(#eduction Factor due to 400 kV circuit)
(
Pc_400 =
)
I400rc Pc_400 =
(
)
∆ΘPrc ρsr , Pc_400 =
(
)
!6rc ρsr , Pc_400 =
(
)
I1132_400rc ρsr , Pc_400 =
100
144
0.45
0.995
1086
150
217
0.54
0.994
1084
200
289
0.67
0.993
1083
250
361
0.84
0.991
1081
300
433
1.05
0.989
1079
350
505
1.29
0.987
1076
400
577
1.57
0.984
1073
450
650
1.89
0.981
1069
500
722
2.24
0.977
1065
550
794
2.64
0.973
1061
600
866
3.07
0.968
1056
650
938
3.53
0.963
1051
700
1010
4.04
0.958
1045
750
1083
4.58
0.952
1038
800
1155
5.16
0.946
1032
1
c r 6 8 ! : r o t c a 8 n o i t c ( d !
0.99
(
)
(
)
1032 (A) I1132_400rc ρsr , P400rc = P1132_400rc ρsr , P400rc = 236 (,VA)
0.98
(
!6rc ρ sr , P c_400
) 0.96
0.95
0.94 100
216.7
333.3
450
566.7
683.3
P c_400
ransmission Po;r: <=A
(
+c_rc_final := I1132_400rc ρsr , P400rc
)
2
= 21.394 ⋅ !cac_rc
+s_rc_final := λ 1_rc⋅ +c_rc_final = 0.704 +d_rc_final := +d = 0.49
800
D Re-#ction 4%ctors D1 R4?1 C%$*es in tro#"h &or 5%rio#s !e+ths %n- L%in" )ith inter%cion o& 900 kV circ#its h'ca := 600 , 700 .. 2000
, %02_%1a# hr $ :=
, %02_%1ma # hr $ :=
, %02_%2a# hr $ :=
, %02_%2ma # hr $ :=
, %02_%3a# hr $ :=
, %02_%3ma # hr $ :=
, %02_%4a# hr $ :=
, %02_%4ma # hr $ :=
, %02_%5a# hr $ :=
, %02_%5ma # hr $ :=
, %02_%6a# hr $ :=
, %02_%6ma # hr $ :=
(Variable i$tance$ o% "able$ axi$ %rom round $ur%ace o% 132 kV circuit@ mm)
( ,400b_132_tr + 400_tr )
2
+ ( hr − h'400_tr )
( ,400b_132_tr + 400_tr ) ( ,400b_132_tr )
2
2
2
( ,400a_132_tr + 400_tr )
2
( ,400a_132_tr + 400_tr ) 2
( ,400a_132_tr )
2
2
( ,400a_132_tr − 400_tr )
(di$tance beteen ?02 and ?3@ mm)
2
(di$tance beteen ?02 and mirror imae ?3@ mm)
2
(di$tance beteen ?02 and ?4@ mm)
2
(di$tance beteen ?02 and mirror imae ?4@ mm)
2
(di$tance beteen ?02 and ?+@ mm)
2
+ ( hr − h'400_tr )
2
2
+ ( hr + h'400_tr )
+ ( hr + h'400_tr )
( ,400a_132_tr − 400_tr )
(di$tance beteen ?02 and mirror imae ?2@ mm)
+ ( hr + h'400_tr )
+ ( hr − h'400_tr )
2
2
+ ( hr − h'400_tr )
2
(di$tance beteen ?02 and mirror imae ?1@ mm)
(di$tance beteen ?02 and ?2@ mm)
+ ( hr − h'400_tr )
( ,400b_132_tr − 400_tr )
2
2
+ ( hr + h'400_tr )
( ,400b_132_tr − 400_tr )
(di$tance beteen ?02 and ?1@ mm)
+ ( hr + h'400_tr )
+ ( hr − h'400_tr )
( ,400b_132_tr )
( ,400a_132_tr )
2
2
(di$tance beteen ?02 and mirror imae ?+@ mm)
2
+ ( hr + h'400_tr )
(di$tance beteen ?02 and ?@ mm)
2
(di$tance beteen ?02 and ?@ mm)
I400tra :=
( P400tr ⋅ 1000) (
("urrent in te 400 kV circuit a$ a %unction o% te tran$mitted poer@ A)
3 ⋅ 400)
I400tra = 1591
(
)
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e a circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_atra = 27.911
(
)
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e b circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_btra = 27.182
(
)
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e c circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_ctra = 27.172
+400_atra := ! A_400_tr ⋅ 1 + λ 1a_tr_400 ⋅ I400tra
+400_btra := ! A_400_tr ⋅ 1 + λ 1b_tr_400 ⋅ I400tra
+400_ctra := ! A_400_tr ⋅ 1 + λ 1c_tr_400 ⋅ I400tra
(
)
∆Θ%02_%1a ρsoil , hr :=
(
)
∆Θ%02_%2a ρsoil , hr :=
(
)
∆Θ%02_%3a ρsoil , hr :=
(
)
∆Θ%02_%4a ρsoil , hr :=
(
)
∆Θ%02_%5a ρsoil , hr :=
(
)
∆Θ%02_%6a ρsoil , hr :=
(
1 2π
1 2π
1 2π
1 2π
1 2π
1 2π
,%02_%1ma # hr $
⋅ ρsoil⋅ +400_atra ⋅ ln
,%02_%1a# hr $ ,%02_%2ma # hr $
⋅ ρsoil⋅ +400_btra ⋅ ln
,%02_%2a# hr $
,%02_%3ma # hr $
⋅ ρsoil⋅ +400_ctra ⋅ ln
,%02_%3a# hr $ ,%02_%4ma # hr $
⋅ ρsoil⋅ +400_atra ⋅ ln
,%02_%4a# hr $ ,%02_%5ma # hr $
⋅ ρsoil⋅ +400_btra ⋅ ln
,%02_%5a# hr $
,%02_%6ma # hr $
⋅ ρsoil⋅ +400_ctra ⋅ ln
,%02_%6a# hr $
)
(
)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
(
)
(
)
(
)
∆ΘPtra ρsoil , hr := ∆Θ%02_%1a ρsoil , hr + ∆Θ%02_%2a ρsoil , hr + ∆Θ%02_%3a ρsoil , hr + ∆Θ%02_%4a ρsoil , hr ... + ∆Θ%02_%5a ρsoil , hr + ∆Θ%02_%6a ρsoil , hr
(
)
(
)
(otal ri$e abo/e ambient temperature at te $ur%ace o% te ?02 cable@ o$e ratin i$ bein determined@ cau$ed by te poer di$$pated by te oter cable$ in roup)
(
# hr $ :=
# 2.hr $
(1t_!1 # hr $ := ln (t_!1# hr $ +
(
)
4trn_!1 ρsoil , hr :=
(
2 (t_!1 # hr $ − 1
ρsoil
2 2 ⋅ hr # hr $ + ln 1 +
⋅ (1t_!1
2π
str
ρsoil
1 + 0.5⋅ ( λ 1a_tr ( Θms , str , !cac_tr ) + λ 1c_tr ( Θms , str , !cac_tr ) )
) 2π ⋅ (1t_!1# hr $ +
4trd_!1 ρsoil , hr :=
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at numerator o% te %inal %ormula)@ .m6;
2 2 ⋅ hr ⋅ ln 1 +
( 1 + λ 1b_tr ( Θms , str , !cac_tr ) )
str
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at denominator o% te %inal %ormula)@ .m6;
(
( Θtr − ∆ΘPtra( ρsoil, hr ) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4trn_!1( ρsoil, hr ) ) ) !cac_tr ⋅ 1 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd_!1( ρsoil , hr ) )
(
)
I1tr_!1 ρsoil , hr :=
(
)
P1 tr_!1 ρsoil , hr := I1tr_!1 ρsoil , hr U p_132⋅ 10
(
⋅ 3
(ran$mi$$ion 5oer in ,VA)
) ) I1 132_400tr ( ρsoil , P400tr )
!1 t ρsoil , hr :=
h'ca =
−6
(
I1tr_!1 ρsoil , hr
(
)
∆ΘPtra ρst , h'ca =
(
)
!1 t ρst , h'ca =
(
)
I1tr_!1 ρst , h'ca =
(
)
P1tr_!1 ρst , h'ca =
600
4.7
1.139
1104
252
700
5.4
1.101
1067
244
800
6
1.07
1037
237
900
6.6
1.043
1011
231
1000
7.2
1.02
989
226
1100
7.7
1
969
222
1200
8.2
0.982
951
218
1300
8.6
0.966
936
214
1400
9
0.951
922
211
1500
9.4
0.939
910
208
1600
9.7
0.927
899
205
1700
9.9
0.917
889
203
1800
10.1
0.908
880
201
1900
10.3
0.899
872
199
2000
10.5
0.892
864
198
1.14
r t 1.09 1 8 ! : r 1.04 o t c !1 ( ρ , h' ) a t st ca 8 n 0.99 o i t c ( d 0.94 ! 0.89 600
833.3
1066.7
1300
1533.3
h'ca
,pth of cabl circ(it: mm
1766.7
2000
D2 R4Y1 C%$*es in !! crossin" &or 5%rio#s !e+ths L%in" )ith inter%ction o& 900 kV circ#its h'ca := 3500 , 4000.. 15000
, 02_1a# hr $ :=
, 02_1ma# hr $ :=
, 02_2a# hr $ :=
, 02_2ma# hr $ :=
, 02_3a# hr $ :=
, 02_3ma# hr $ :=
, 02_4a# hr $ :=
, 02_4ma# hr $ :=
, 02_5a# hr $ :=
,400b_132_hdd −
(Variable i$tance$ o% "able$ %rom round $ur%ace@ mm) s hdd
2
,400b_132_hdd −
s hdd
2
shdd
2
s hdd
2
,400b_132_hdd −
shdd
2
,400b_132_hdd −
,400a_132_hdd −
shdd
2
,400a_132_hdd −
2
shdd
2
+ ( hr + bl400)
+ ( bl400 − hr )
400_hdd
(di$tance beteen =02 and mirror imae =2@ mm)
2
(di$tance beteen =02 and =3@ mm)
2
2
2
+ ( hr + bl400)
2
(di$tance beteen =02 and mirror imae =3@ mm)
2
−
(di$tance beteen =02 and =2@ mm)
2
2
2
2
2
(di$tance beteen =02 and mirror imae =1@ mm)
+ ( bl400 − hr )
400_hdd
400_hdd
s hdd
,400a_132_hdd −
+
2
2
2
−
(di$tance beteen =02 and =1@ mm)
+ ( hr + bl400)
400_hdd
+
2
2
2
,400b_132_hdd −
+ ( hr − hl400)
shdd
,400b_132_hdd −
2
+
s hdd
+ ( hr − hl400)
2
(di$tance beteen =02 and =4@ mm)
2
+ ( hr + bl400)
400_hdd
2
2
(di$tance beteen =02 and mirror imae =4@ mm)
2
400_hdd
+ ( hl400 − hr )
2
(di$tance beteen =02 and =+@ mm)
2 2
, 02_6a# hr $ :=
shdd
2
,400a_132_hdd −
, 02_6ma# hr $ :=
I400hdda :=
s hdd
2
,400a_132_hdd −
( P400hdd⋅ 1000) (
−
400_hdd
2
+ ( bl400 − hr )
2
400_hdd
−
2
2
(di$tance beteen =02 and =@ mm)
2
+ ( hr + bl400)
2
(di$tance beteen ?02 and ?@ mm)
("urrent in te 400 kV circuit a$ a %unction o% te tran$mitted poer@ A)
3 ⋅ 400)
I400hdda = 820
)
(
+400_hdda := ! A_400_hdd ⋅ 1 + λ 1_hdd_400 ⋅ I400hdda
2
+ +d400 (9$timated lo$$e$ in te 400 kV pa$e a circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_hdda = 8.292
(
)
∆Θ02_1a ρsoil , hr :=
(
)
∆Θ02_2a ρsoil , hr :=
(
)
∆Θ02_3a ρsoil , hr :=
(
)
∆Θ02_4a ρsoil , hr :=
(
)
∆Θ02_5a ρsoil , hr :=
(
)
∆Θ02_6a ρsoil , hr :=
(
1 2π
1 2π
1 2π
1 2π
1 2π
1 2π
,02_1ma# hr $
⋅ ρsoil⋅ +400_hdda ⋅ ln
,02_1a# hr $ ,02_2ma# hr $
⋅ ρsoil⋅ +400_hdda ⋅ ln
,02_2a# hr $ ,02_3ma# hr $
⋅ ρsoil⋅ +400_hdda ⋅ ln
,02_3a# hr $ ,02_4ma# hr $
⋅ ρsoil⋅ +400_hdda ⋅ ln
,02_4a# hr $ ,02_5ma# hr $
⋅ ρsoil⋅ +400_hdda ⋅ ln
,02_5a# hr $ ,02_6ma# hr $
⋅ ρsoil⋅ +400_hdda ⋅ ln
,02_6a# hr $
)
(
)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable =02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable y02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable =02)
(
)
(
)
(
)
∆ΘPhdda ρsoil , hr := ∆Θ02_1a ρsoil , hr + ∆Θ02_2a ρsoil , hr + ∆Θ02_3a ρsoil , hr + ∆Θ02_4a ρsoil , hr ... + ∆Θ02_5a ρsoil, hr + ∆Θ02_6a ρsoil, hr
(
)
(
)
(otal ri$e abo/e ambient temperature at te $ur%ace o% te =02 cable@ o$e ratin i$ bein determined@ cau$ed by te
hl_!>1# hr $ := hr − s hdd⋅
bl_!>1# hr $ := hr + s hdd⋅
(!>1# hr $ :=
3
(urial dept o% te upmo$t cable@ mm)
3 3
(urial dept o% te deep$t cable@ mm)
6
2. bl_!>1# hr $
(u#F2 i$ calculated it re%erence to te centre line o% te deepe$t
do pip_hdd
(1c_!>1 # hr $ := ln (!>1# hr $ +
(
(
!>1# hr $
2
ρsoil ( 1c_!2 # hr $ + ln 2π
)
43c_!>1 ρsoil , hr :=
(
duct$(non
−1
2 2 # 2 bl_!>1# hr $ $ + ( s hdd) + ln shdd
)
(
2 # 2 hl_!>1# hr $ $ + 2 2 s 2 hdd # bl_!>1# hr $ − hl_!>1 # hr $ $ + 2 shdd
2
)
4c_!>1 ρsoil , hr := 41hdd + 42hdd + 43c_!>1 ρsoil , hr
9xternal ermal #e$i$tance %or current ratin calculation in @ .m6;
(
( Θhdd − ∆ΘPhdda( ρsoil , hr ) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4c_!>1 ( ρsoil, hr ) ) ) !cac_hdd ⋅ 1 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd) 2 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd) ( 3 + 4c_!>1 ( ρsoil , hr ) )
(
)
I1hdd_!>1 ρsoil , hr :=
(
)
P1 hdd_!>1 ρsoil , hr := I1hdd_!>1 ρsoil , hr U p_132⋅ 10
(
)
!>1t ρsoil , hr :=
) I1132_400hdd ( ρsoil , P400hdd)
(
I1hdd_!>1 ρsoil , hr
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
h'ca =
(
)
∆ΘPhdda ρhdd , h'ca =
(
)
I1hdd_!>1 ρhdd , h'ca =
3500
5.7
942
4000
6.5
921
4500
7.2
901
5000
8
884
5500
8.7
868
6000
9.3
854
6500
9.9
842
7000
10.3
832
7500
10.5
824
8000
10.6
818
8500
10.6
814
9000
10.5
811
9500
10.3
810
10000
10
808
10500
9.8
808
11000
9.5
807
11500
9.2
807
12000
8.9
807
12500
8.7
807
13000
8.4
807
13500
8.1
807
14000
7.9
807
14500
7.7
807
15000
7.4
807
(
)
!>1t ρhdd , h'ca = 1.138 1.112 1.089 1.068 1.049 1.032 1.018 1.005 0.996 0.989 0.984 0.98 0.978 0.977 0.976 0.976 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975
1.14
d d h 1.11 1 > 8 ! : 1.07 r o t !>1 ( ρ , h' ) c t hdd ca a 8 1.04 n o i t c ( d 1 ! 0.97 3500
5416.7
7333.3
9250 h'ca
11166.7
13083.3
15000
(
)
P1hdd_!>1 ρhdd , h'ca = 215 210 206 202 199 195 193 190 188 187 186 185 185 185 185 185 185 185 185 185 185 185 185 185
D3 R481 C%$*es in -#ct$%nk &or ro%- crossin" &or 5%rio#s !e+ths %n- L%in" )ith inter%ction o& 900 kV circ#its h'ca := 750 , 1000 .. 3000
, "02_"1a# hr $ :=
, "02_"1ma # hr $ :=
, "02_"2a# hr $ :=
, "02_"2ma # hr $ :=
, "02_"3a# hr $ :=
, "02_"3ma # hr $ :=
, "02_"4a# hr $ :=
, "02_"4ma # hr $ :=
, "02_"5a# hr $ :=
, "02_"5ma # hr $ :=
, "02_"6a# hr $ :=
(Variable i$tance$ o% "able$ axi$ %rom round $ur%ace@ mm)
( ,400b_132_rc + 400_rc )
2
+ ( hr − h'400_rc )
( ,400b_132_rc + 400_rc ) ( ,400b_132_rc )
2
2
2
( ,400a_132_rc + 400_rc )
2
( ,400a_132_rc + 400_rc ) 2
( ,400a_132_rc )
2
)
(di$tance beteen 02 and mirror imae 2@ mm)
+ ( hr − h'400_rc )
2
(di$tance beteen 02 and 3@ mm)
(
2
(di$tance beteen 02 and mirror imae 3@ mm)
2
(di$tance beteen 02 and 4@ mm)
2
(di$tance beteen 02 and mirror imae 4@ mm)
2
(di$tance beteen 02 and +@ mm)
2
+ ( hr − h'400_rc )
2
2
+ ( hr + h'400_rc )
+ ( hr + h'400_rc )
2
2
+ ( hr + h'400_rc )
+ ( hr − h'400_rc )
( ,400a_132_rc − 400_rc ) (
2
(di$tance beteen 02 and mirror imae 1@ mm)
(di$tance beteen 02 and 2@ mm)
+ ( hr − h'400_rc )
( ,400b_132_rc − 400_rc )
2
2
+ ( hr + h'400_rc )
( ,400b_132_rc − 400_rc )
(di$tance beteen 02 and 1@ mm)
+ ( hr + h'400_rc )
+ ( hr − h'400_rc )
( ,400b_132_rc )
( ,400a_132_rc )
2
2
(di$tance beteen 02 and mirror imae +@ mm)
2
(di$tance beteen 02 and @ mm)
)
2
I400rca :=
⋅ ( P400rc 1000 )
(
("urrent in te 400 kV circuit a$ a %unction o% te tran$mitted poer@ A)
3 ⋅ 400)
I400rca = 1155
(
)
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e a circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_arca = 15.209
(
)
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e b circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_brca = 14.827
(
)
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e c circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_crca = 14.822
+400_arca := ! A_400_rc ⋅ 1 + λ 1a_rc_400 ⋅ I400rca
+400_brca := ! A_400_rc ⋅ 1 + λ 1b_rc_400 ⋅ I400rca
+400_crca := ! A_400_rc ⋅ 1 + λ 1c_rc_400 ⋅ I400rca
(
)
∆Θ"02_"1a ρsoil , hr :=
(
)
∆Θ"02_"2a ρsoil , hr :=
(
)
∆Θ"02_"3a ρsoil , hr :=
(
)
∆Θ"02_"4a ρsoil , hr :=
(
)
∆Θ"02_"5a ρsoil , hr :=
(
)
∆Θ"02_"6a ρsoil , hr :=
,"02_"1ma # hr $
1 2π
⋅ ρsoil⋅ +400_arca ⋅ ln
,"02_"1a# hr $ ,"02_"2ma # hr $
1 2π
⋅ ρsoil⋅ +400_brca ⋅ ln
,"02_"2a# hr $
,"02_"3ma # hr $
1 2π
⋅ ρsoil⋅ +400_crca ⋅ ln
,"02_"3a# hr $ ,"02_"4ma # hr $
1 2π
⋅ ρsoil⋅ +400_arca ⋅ ln
,"02_"4a# hr $ ,"02_"5ma # hr $
1 2π
⋅ ρsoil⋅ +400_brca ⋅ ln
,"02_"5a# hr $
,"02_"6ma # hr $
1 2π
⋅ ρsoil⋅ +400_crca ⋅ ln
(
,"02_"6a# hr $
)
(
)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% %urte$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable 02)
(emperature ri$e at te $ur%ace o% cable produced by te poer o% clo$e$t 400 kV circuit and di$$pated in cable 02)
(
)
(
)
(
)
∆ΘPrca ρsoil , hr := ∆Θ"02_"1a ρsoil , hr + ∆Θ"02_"2a ρsoil , hr + ∆Θ"02_"3a ρsoil , hr + ∆Θ"02_"4a ρsoil , hr ... + ∆Θ"02_"5a ρsoil, hr + ∆Θ"02_"6a ρsoil , hr
(
)
(
)
(otal ri$e abo/e ambient temperature at te $ur%ace o% te 02 cable@ o$e ratin i$ bein determined@ cau$ed by te poer di$$pated by te oter cable$ in roup)
∆h',-_!)1# hr $ := hr +
do
+ pip_rc − do pip_rc − 200 + ,t 2
∆h',-_!)1# hr $
(,-_!)1# hr $ :=
r b
2 / ) 2π ⋅ ( ρsoil − ρconcrt ) ⋅ ln(,-_!)1# hr $ + (,-_!)1# hr $
(
4r_corr_!)1 ρsoil , hr :=
(rc_!)1 # hr $ :=
−1
2hr do pip_rc
(1rc_!)1 # hr $ := ln (rc_!)1# hr $ +
(
)
43rn_!)1 ρ soil , hr :=
2 (rc_!)1# hr $ − 1
ρconcrt
⋅ (1rc_!)1
2π
2 2⋅ hr # hr $ + ln 1 + + 4
s tr
(
)
r_corr_!)1 ρsoil , hr
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at numerator o% te %inal %ormula)@ .m6;
(
ρconcrt
)
43rd_!)1 ρsoil , hr :=
2π
⋅ (1rc_!)1 # hr $ +
+ 4r_corr_!)1 ( ρsoil , hr )
1 + 0.5⋅ ( λ 1a_rc ( Θms , src , !cac_rc) + λ 1c_rc ( Θms , src , !cac_rc) )
( 1 + λ 1b_rc ( Θms , src, !cac_rc) )
2 2 ⋅ hr ⋅ ln 1 +
s tr
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at denominator o% te %inal %ormula)@ .m6;
(
)
(
)
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at numerator o% te %inal %ormula)@ .m6;
(
)
(
)
9xternal ermal #e$i$tance %or current ratin calculation in duct bank (to u$ed at denominator o% te %inal %ormula)@ .m6;
4rn_!)1 ρsoil , hr := 41rc + 42rc + 43rn_!)1 ρsoil , hr
4rd_!)1 ρsoil , hr := 41rc + 42rc + 43rd_!)1 ρsoil , hr
( Θrc − ∆ΘPrca( ρsoil, hr ) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4rn_!)1 ( ρsoil, hr ) ) I1rc_!)1( ρsoil , hr ) := !cac_rc⋅ 1 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) 2 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) ( 3 + 4rd_!)1 ( ρsoil , hr ) )
(
)
(
)
(
) )
P1 rc_!)1 ρsoil , hr := I1rc_!)1 ρsoil , hr U p_132⋅ 10
(
)
!)1t ρsoil , hr :=
I1
I1rc_!)1 ρsoil , hr
(
P
−6
⋅ 3
(ran$mi$$ion 5oer in ,VA)
...
h'ca =
(
)
∆ΘPrca ρsr , h'ca =
(
)
(
!)1t ρsr , h'ca =
)
(
I1rc_!)1 ρsr , h'ca =
750
3.337
1.062
1095
250
1000
4.282
1.007
1039
237
1250
5.094
0.967
998
228
1500
5.76
0.937
966
221
1750
6.274
0.913
942
215
2000
6.648
0.894
923
211
2250
6.898
0.879
907
207
2500
7.047
0.867
894
204
2750
7.115
0.857
884
202
3000
7.122
0.848
875
200
1.1
c r 1.05 1 ) 8 ! : r 1 o t c !)1 ( ρ , h' ) a t sr ca 8 n 0.94 o i t c ( d 0.89 ! 0.84 750
1125
1500
1875
2250
h'ca
,pth of cabl circ(it: mm
2625
)
P1rc_!)1 ρsr , h'ca =
3000
D9 R4?2 C%$*es in tro#"h &or 5%rio#s soi* resisti5iti )ith inter%cion o& 900 kV circ#its
ρsoil := 0.8, 0.9 .. 2.3
(Variable termal re$i$ti/ity o% $oil@ .m6;)
( Θtr − ∆ΘPtr ( ρsoil, P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4trn( ρsoil) ) ) !cac_tr ⋅ 1 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd( ρsoil) )
(
I1tr_!2 ρsoil , P :=
(
)
P1 tr_!2 ρsoil , P :=
(
)
!2 t ρsoil , P :=
ρsoil =
)(
(
3 ⋅ 132)
I1tr_!2 ρsoil , P ⋅
1000
(
) I1132_400tr ( ρst , P)
I1tr_!2 ρsoil , P
(
(#eduction Factor due to 400 kV circuit)
)
!2 t ρsoil , P400tr =
(
)
I1tr_!2 ρsoil , P400tr =
(
)
P1tr_!2 ρsoil , P400tr =
0.8
1.208
1171
268
0.9
1.147
1112
254
1
1.093
1059
242
1.1
1.044
1012
231
1.2
1
969
222
1.3
0.96
930
213
1.4
0.923
895
205
1.5
0.889
862
197
1.6
0.857
831
190
1.7
0.828
802
183
1.8
0.8
776
177
1.9
0.774
750
172
2
0.75
727
166
2.1
0.727
704
161
2.2
0.705
683
156
2.3
0.684
663
151
1.2
1.1
r t 2 8 ! : 1 r o t c !2 ( ρ , P a t soil 400tr ) 8 n o 0.8 i t c ( d ! 0.7
0.6 0.8
1.1
1.3
1.6
1.8
2.1
2.3
ρ soil
oil thrmal rsisti&it: ?.m@+
D@ R4Y2 C%$*es in !! crossin" &or 5%rio#s soi* resisti5it )ith inter%cion o& 900 kV circ#its
ρsoil := 0.8, 0.9 .. 2.3
(Variable termal re$i$ti/ity o% $oil@ .m6;)
( Θhdd − ∆ΘPhdd ( ρsoil , P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4hdd( ρsoil) ) ) !cac_hdd ⋅ 1 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd) 2 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd) ( 3 + 4hdd( ρsoil) )
(
I1hdd_!>2 ρsoil , P :=
(
)
P1 hdd_!>2 ρsoil , P :=
(
)
!>2t ρsoil , P :=
(
)(
I1132_400hdd ρsoil , P ⋅
3 ⋅ 132)
1000
( (
I1hdd_!>2 ρsoil , P
) )
(#eduction Factor due to 400 kV circuit)
ρsoil =
(
)
(
!>2t ρsoil , P400hdd =
)
I1hdd_!>2 ρsoil , P400hdd =
(
0.8
1.12
927
212
0.9
1.057
875
200
1
1
828
189
1.1
0.949
785
180
1.2
0.902
747
171
1.3
0.859
711
163
1.4
0.819
678
155
1.5
0.782
648
148
1.6
0.748
619
142
1.7
0.715
592
135
1.8
0.685
567
130
1.9
0.656
543
124
2
0.628
520
119
2.1
0.601
498
114
2.2
0.576
476
109
2.3
0.551
456
104
1.1
1
d d h 2 > 8 ! 0.9 : r o t c !>2t( ρsoil , P400hdd ) a 8 n 0.8 o i t c ( d ! 0.7
0.6 0.8
1.1
1.3
1.6
1.8
ρ soil
oil thrmal rsisti&it: ?.m@+
2.1
2.3
)
P1hdd_!>2 ρsoil , P400hdd =
D; R482 C%$*es in !#ct $%nk &or crossin" &or 5%rio#s soi* resisti5it )ith inter%cion o& 900 kV circ#its ρsoil := 0.8, 0.9 .. 2.3
(Variable termal re$i$ti/ity o% $oil@ .m6;)
( Θrc − ∆ΘPrc( ρsoil , P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4m( ρsoil) ) ) !cac_rc⋅ 1 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) 2 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) ( 3 + 4rc( ρsoil) )
(
I1rc_!)2 ρsoil , P :=
(
)
P1 rc_!)2 ρsoil , P :=
(
)
!)2t ρsoil , P :=
ρsoil =
)(
(
I1132_400rc ρsoil , P ⋅
3⋅ 132)
1000
(
) I1132_400rc ( ρsr , P) I1rc_!)2 ρsoil , P
(
(#eduction Factor due to 400 kV circuit)
)
!)2t ρsoil , P400rc =
(
)
I1rc_!)2 ρsoil , P400rc =
(
P1rc_!)2 ρsoil , P400rc
0.8
1.13
1165
266
0.9
1.094
1128
258
1
1.06
1094
250
1.1
1.029
1062
243
1.2
1
1032
236
1.3
0.973
1003
229
1.4
0.947
977
223
1.5
0.923
952
218
1.6
0.899
928
212
1.7
0.878
905
207
1.8
0.857
884
202
1.9
0.837
863
197
2
0.818
844
193
2.1
0.8
825
189
2.2
0.783
807
185
2.3
0.766
790
181
)
=
1.13
1.06
c r 2 ) 8 ! 0.98 : r o t c !)2 ( ρ , P a t soil 400rc) 8 n o 0.91 i t c ( d ! 0.83
0.76 0.8
1.1
1.3
1.6
1.8
2.1
2.3
ρ soil
oil thrmal rsisti&it: ?.m@+
D> R4?3 C%$*es in tro#"h &or 5%rio#s soi* tem+er%t#res )ith inter%cion o& 900 kV circ#its Θ'ro(nd := 30 , 31 .. 50
(
)
Θ!3 Θ'ro(nd := Θma% − Θ'ro(nd
( Θ!3 ( Θ'ro(nd) − ∆ΘPtr ( ρsoil , P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4trn( ρsoil) ) ) !cac_tr ⋅ 1 + n⋅ !cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd( ρsoil) )
(
I1tr_!3 ρsoil , P , Θ'ro(nd :=
(
)
P1 tr_!3 ρsoil , P , Θ'ro(nd :=
(
)
!3 t ρsoil , P , Θ'ro(nd :=
)(
(
I1tr_!3 ρsoil , P , Θ'ro(nd ⋅
3 ⋅ 132)
1000
(
I1tr_!3 ρsoil , P , Θ'ro(nd
(
I1132_400tr ρsoil , P
)
)
(#eduction Factor due to 400 kV circuit)
Θ'ro(nd =
(
)
!3 t ρst , P400tr , Θ'ro(nd =
(
)
(
30
1.114
1080
247
31
1.103
1070
245
32
1.092
1059
242
33
1.081
1048
240
34
1.07
1037
237
35
1.059
1026
235
36
1.047
1015
232
37
1.036
1004
229
38
1.024
992
227
39
1.012
981
224
40
1
969
222
41
0.988
957
219
42
0.976
946
216
43
0.963
933
213
44
0.95
921
211
45
0.938
909
208
46
0.925
896
205
47
0.911
883
202
48
0.898
870
199
49
0.885
857
196
50
0.871
844
193
1.12
r 1.07 t 3 8 ! : r 1.02 o t c !3 ( ρ , P a t st 400tr , Θ'ro(nd ) 8 n 0.97 o i t c ( d ! 0.92
0.87 30
33.3
)
I1tr_!3 ρst , P400tr , Θ'ro(nd = P1tr_!3 ρst , P400tr , Θ'ro(nd =
36.7
40
43.3
Θ'ro(nd
oil mprat(r: ?
46.7
50
D< R4Y3 C%$*es in !! crossin" &or 5%rio#s soi* tem+er%t#res )ith inter%cion o& 900 kV circ#its Θ'ro(nd := 30 , 31 .. 50
(
)
Θ!>3 Θ'ro(nd := Θma% − Θ'ro(nd
( Θ!>3( Θ'ro(nd) − ∆ΘPhdd( ρsoil, P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4hdd( ρsoil) ) ) !cac_hdd ⋅ 1 + n⋅!cac_hdd ⋅ ( 1 + λ 1_hdd) 2 + n⋅ !cac_hdd ⋅ ( 1 + λ 1_hdd) ( 3 + 4hdd( ρsoil) )
Θ'ro(nd := 30 , 31 .. 50 I1hdd_!>3 ρsoil , P , Θ'ro(nd :=
(
(
)
P1 hdd_!>3 ρsoil , P , Θ'ro(nd :=
(
)
!>3t ρsoil , P , Θ'ro(nd :=
Θ'ro(nd =
)(
(
I1hdd_!>3 ρsoil , P , Θ'ro(nd ⋅
1000
(
I1hdd_!>3 ρsoil , P , Θ'ro(nd
(
I1132_400hdd ρsoil , P
(
3 ⋅ 132)
)
(#eduction Factor due to 400 kV circuit)
) )
!>3t ρhdd , P400hdd , Θ'ro(nd =
(
)
(
I1hdd_!>3 ρhdd , P400hdd , Θ'ro(nd =P1hdd_!>3 ρhdd , P400hdd , Θ'ro(nd
30
1.123
929
212
31
1.111
920
210
32
1.099
910
208
33
1.087
900
206
34
1.075
890
204
35
1.063
880
201
36
1.051
870
199
37
1.038
859
196
38
1.026
849
194
39
1.013
838
192
40
1
828
189
41
0.987
817
187
42
0.974
806
184
43
0.96
795
182
44
0.946
783
179
45
0.932
772
176
46
0.918
760
174
47
0.904
748
171
48
0.89
736
168
49
0.875
724
166
50
0.86
712
163
)
1.12
d d 1.07 h 3 > 8 ! 1.02 : r o t !>3 ( ρ , P c t hdd 400hdd , Θ'ro(nd ) a 8 0.96 n o i t c ( d 0.91 ! 0.86 30
33.3
36.7
40
43.3
46.7
50
Θ'ro(nd
oil mprat(r: ?
DD R483 C%$*es in !#ct $%nk &or crossin" &or 5%rio#s soi* tem+er%t#res )ith inter%cion o& 900 kV circ#its Θ'ro(nd := 30 , 31 .. 50
(
)
Θ!)3 Θ'ro(nd := Θma% − Θ'ro(nd
( Θ!)3( Θ'ro(nd) − ∆ΘPrc( ρsoil, P) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4m( ρsoil) ) I1rc_!)3( ρsoil , P , Θ'ro(nd ) := !cac_rc⋅ 1 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) 2 + n⋅!cac_rc⋅ ( 1 + λ 1_rc) ( 3 + 4rc( ρsoil) ) (
)
P1 rc_!)3 ρsoil , P , Θ'ro(nd :=
(
)
!)3t ρsoil , P , Θ'ro(nd :=
)(
(
I1rc_!)3 ρsoil , P , Θ'ro(nd ⋅
3 ⋅ 132)
1000
(
I1rc_!)3 ρsoil , P , Θ'ro(nd
(
I1132_400rc ρsoil , P
)
)
(#eduction Factor due to 400 kV circuit)
Θ'ro(nd =
(
)
!)3t ρsr , P400rc , Θ'ro(nd =
(
)
I1rc_!)3 ρsr , P400rc , Θ'ro(nd =
(
30
1.108
1143
261
31
1.098
1132
259
32
1.087
1122
256
33
1.077
1111
254
34
1.066
1100
251
35
1.055
1089
249
36
1.045
1078
246
37
1.034
1066
244
38
1.022
1055
241
39
1.011
1043
239
40
1
1032
236
41
0.989
1020
233
42
0.977
1008
230
43
0.965
996
228
44
0.953
984
225
45
0.941
971
222
46
0.929
959
219
47
0.917
946
216
48
0.904
933
213
49
0.892
920
210
50
0.879
907
207
1.12
d 1.07 d h 3 > 8 ! 1.02 : r o t c !>3t( ρ hdd , P400hdd , Θ'ro(nd ) a 8 n 0.97 o i t c ( d ! 0.92
0.87 30
33.3
36.7
40
43.3
Θ'ro(nd
oil mprat(r: ?
46.7
50
)
P1rc_!)3 ρsr , P400rc , Θ'ro(nd =
D10 R4?9 C%$*es in tro#"h &or 5%rio#s c%$*e se+%r%tion )ith inter%cion o& 900 kV circ#its s ca := 200 , 250 .. 600
( )
, %02_%1b s ca :=
( )
, %02_%1mb s ca :=
( )
, %02_%2b s ca :=
( )
, %02_%2mb s ca :=
( )
, %02_%3b s ca :=
( )
, %02_%3mb s ca :=
( )
, %02_%4b s ca :=
( )
, %02_%4mb s ca :=
( )
, %02_%5b s ca :=
( )
, %02_%5mb s ca :=
( )
, %02_%6b s ca :=
( )
, %02_%6mb s ca :=
( ,400b_132_tr + sca)
2
( ,400b_132_tr + sca) ( ,400b_132_tr )
2
( ,400b_132_tr )
2
2
( ,400a_132_tr + sca)
2
( ,400a_132_tr + sca)
( ,400a_132_tr )
2
2
( ,400a_132_tr − sca)
(di$tance beteen ?02 and mirror imae ?2@ mm)
(di$tance beteen ?02 and ?3@ mm)
2
(di$tance beteen ?02 and mirror imae ?3@ mm)
2
(di$tance beteen ?02 and ?4@ mm)
2
(di$tance beteen ?02 and mirror imae ?4@ mm)
2
(di$tance beteen ?02 and ?+@ mm)
2
+ ( h'1ca_tr − h'400_tr ) 2
2
+ ( h'1ca_tr + h'400_tr )
+ ( h'1ca_tr + h'400_tr )
( ,400a_132_tr − sca)
(di$tance beteen ?02 and mirror imae ?1@ mm)
2
+ ( h'1ca_tr + h'400_tr )
+ ( h'1ca_tr − h'400_tr )
2
(di$tance beteen ?02 and ?2@ mm)
+ ( h'1ca_tr − h'400_tr )
2
(di$tance beteen ?02 and ?1@ mm)
2
+ ( h'1ca_tr − h'400_tr )
2
2
+ ( h'1ca_tr + h'400_tr )
+ ( h'1ca_tr + h'400_tr )
( ,400b_132_tr − sca)
2
2
+ ( h'1ca_tr − h'400_tr )
( ,400b_132_tr − sca)
( ,400a_132_tr )
+ ( h'1ca_tr − h'400_tr )
(di$tance beteen ?02 and mirror imae ?+@ mm)
2
+ ( h'1ca_tr + h'400_tr )
(di$tance beteen ?02 and ?@ mm) 2
(di$tance beteen ?02 and ?@ mm)
I400trb :=
⋅ ( P400tr 1000 )
(
("urrent in te 400 circuit a$ a %unction o% te tran$mitted poer@ A)
3⋅ 400)
I400trb = 1591
)
(
+400_atrb := ! A_400_tr ⋅ 1 + λ 1a_tr_400 ⋅ I400trb
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e a circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_atrb = 27.911
)
(
+400_btrb := ! A_400_tr ⋅ 1 + λ 1b_tr_400 ⋅ I400trb
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e b circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_btrb = 27.182
)
(
+400_ctrb := ! A_400_tr ⋅ 1 + λ 1c_tr_400 ⋅ I400trb
2
+ +d400
(9$timated lo$$e$ in te 400 kV pa$e c circuit a$ a %unction o% te tran$mitted poer 5 at 400 kV@ ;6m) +400_ctrb = 27.172
(
)
∆Θ%02_%1b ρsoil , sca :=
(
)
∆Θ%02_%2b ρsoil , sca :=
(
)
∆Θ%02_%3b ρsoil , sca :=
(
)
∆Θ%02_%4b ρsoil , sca :=
(
)
∆Θ%02_%5b ρsoil , sca :=
(
)
∆Θ%02_%6b ρsoil , sca :=
(
1 2π
1 2π
1 2π
1 2π
1 2π
1 2π
,%02_%1mb( s ca) (emperature ri$e at te $ur%ace o% cable produced by te poer
⋅ ρsoil⋅ +400_atrb ⋅ ln
,%02_%1b ( sca)
o% %urte$t 400 kV circuit and di$$pated in cable ?02)
,%02_%2mb( s ca) (emperature ri$e at te $ur%ace o% cable produced by te poer
⋅ ρsoil⋅ +400_btrb ⋅ ln
,%02_%2b ( sca)
o% %urte$t 400 kV circuit and di$$pated in cable ?02)
,%02_%3mb( s ca) (emperature ri$e at te $ur%ace o% cable produced by te poer
⋅ ρsoil⋅ +400_ctrb ⋅ ln
,%02_%3b ( sca)
o% %urte$t 400 kV circuit and di$$pated in cable ?02)
,%02_%4mb( s ca) (emperature ri$e at te $ur%ace o% cable produced by te poer
⋅ ρsoil⋅ +400_atrb ⋅ ln
,%02_%4b ( sca)
o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
,%02_%5mb( s ca) (emperature ri$e at te $ur%ace o% cable produced by te poer
⋅ ρsoil⋅ +400_btrb ⋅ ln
,%02_%5b ( sca)
o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
,%02_%6mb( s ca) (emperature ri$e at te $ur%ace o% cable produced by te poer
⋅ ρsoil⋅ +400_ctrb ⋅ ln
,%02_%6b ( sca)
)
(
)
o% clo$e$t 400 kV circuit and di$$pated in cable ?02)
(
)
(
)
(
)
∆ΘPtrb ρsoil , sca := ∆Θ%02_%1b ρsoil , sca + ∆Θ%02_%2b ρsoil , sca + ∆Θ%02_%3b ρsoil , sca + ∆Θ%02_%4b ρsoil , sca ... + ∆Θ%02_%5b ρsoil , sca + ∆Θ%02_%6b ρsoil , sca
(
)
(
)
(otal ri$e abo/e ambient temperature at te $ur%ace o% te ?02 cable@ o$e ratin i$ bein determined@ cau$ed by te
( 2.h'1ca_tr )
(t_!7b :=
do
(1t_!7b := ln (t_!7b +
(
)
4trn_!7b ρsoil , sca :=
(
)
4trd_!7b ρsoil , sca :=
2 (t_!7b − 1
ρsoil
2π
ρsoil
1 + 0.5⋅ ( λ 1a_tr ( Θms , str , !cac_tr ) + λ 1c_tr ( Θms , str , !cac_tr ) )
⋅ (1t_!7b + ln 1 +
⋅ ( (1t_!7b ) +
2π
2 2⋅ h'1 ca_tr
s ca
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at numerator o% te %inal %ormula)@ .m6;
( 1 + λ 1b_tr ( Θms , str , !cac_tr ) )
⋅ ln 1 +
2 2⋅ h'1 ca_tr
s ca
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at denominator o% te %inal %ormula)@ .m6;
(
( Θtr − ∆ΘPtrb( ρsoil, sca) ) − +d⋅ 0.51 + n⋅ ( 2 + 3 + 4trn_!7b( ρsoil , sca) ) ) !cac_tr ⋅ 1 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) 2 + n⋅!cac_tr ⋅ ( 1 + λ 1_tr ) ( 3 + 4trd_!7b ( ρsoil , sca) )
(
)
I1tr_!4 ρsoil , sca :=
(
)
P1 tr_!4 ρsoil , sca := I1tr_!4 ρsoil , sca U p_132⋅ 10
⋅ 3
(ran$mi$$ion 5oer in ,VA)
( ) ) I1 132_400tr ( ρsoil , P400tr )
(
!4 c ρ soil , sca :=
s ca =
−6
I1c_!7 ρsoil , sca
(
)
!4 c ρst , sca =
(
)
I1tr_!4 ρst , sca =
(
)
P1tr_!4 ρst , sca =
200
1.089
974
223
250
1.113
995
228
300
1.134
1014
232
350
1.152
1029
235
400
1.169
1043
239
450
1.184
1056
241
500
1.197
1068
244
550
1.21
1078
246
600
1.222
1088
249
POWER CABLE IMPE!A'CE CALC.LATIO'(