CONFIDENTIAL*
PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN 954/1 PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN
PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN STPM 2014 PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN MATHEMATICS T PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PAPER 1 PEPERIKSAAN PERCUBA PERCUBAAN AN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN One and a half hours PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN PEPERIKSAAN PERCUBAAN PERCUBAAN
Skema Pemarkahan
Mathematics T Paper 1 (954/1) PEPERIKSAAN PERCUBAAN PENGGAL 1 SIJIL TINGGI PERSEKOLAHAN MALAYSIA 2014
2
CONFIDENTIAL*
1.
The functions f and g are defined by : f : x x + 4, x , a x b , x , x 4
g : x x2 – 4 x, (a) (b)
1.(a)
1.(b)
By finding the values of g (1) and g (3) , explain why the inverse function g -1( x) is not defined [2 marks] Given that the function g f ( x) is defined, find the minimum value of a and the maximum value of b. [3 marks]
g (1) 3 , g (3) 3 g (1) g (3) 3 g is not one-to-one
M1
function g 1 ( x) not defined
A1
Get g (1) and g (3) and
conclude
For function g f ( x) defined
R f D g f ( x) D g x D f f ( x) [4 , 4] 4 f ( x) 4 4 x4 4 8 x 0 But a x b minimum a = – 8 , maximum b = 0
100
2.(a) Evaluate
3
r
M1 A1 A1
3r 1 , give your answer in the standard form A 10n .
[3 marks]
r 1
(b) Express
4 (2 x) 1 3 x
in the form of increasing power of x including the term of x3.
Determine the range of values of x so that this expansion is valid.
[6 marks]
2(a)
M1 A1 A1 (b)
=
1
x 21 1 3x (2 x) 1 3 x 2 x (1)(2) x 2 (1)(2)(3) x 21 (1)( ) ( ) ( ) 3 .... 2 2! 2 3! 2 ( 12 )( 32 ) ( 12 )( 32 )( 52 ) 1 2 3 1 ( )( 3 x ) ( 3 x ) ( 3 x ) ... 2 2! 3! 4
1 2
See
M1
M1
1
k (1 ) (1 3x ) x 2
Either one expanded
1 2
3
CONFIDENTIAL* 1 1 1 21 x x 2 x 3 ... 4 8 2 23 2(1 x x 2 7 x 3 ...) 8 23 2 2 x x 2 14x 3 ... 4 The expansion is valid when x 1 and 3 x 1 2 =
correctly
27 2 135 3 3 1 x x x ... 2 8 16
A1
=
=
x 2 and x
3.
x
1 3
or
Either one series correct
A1 M1
1
3 1
1
3
3
x
A1
Matrix P is invertible if P 0 where P is the determinant of P. 3 4 1 3 4 1 The matrix A 1 0 3 has an inverse A1 because 1 0 3 10 . 2 5 4 2 5 4
(a) (b)
Find A 1 by using the method of elementary row operations. [3 marks] Solve the following system of linear equations by method of matrices that involves A and A1 . 3 x 4 y z 1 2 x 5 y 4 z 3
[4 marks]
x 3 z 2
(c)
State the value of 6 4 1 (i)
3(a)
A I 1 = 3 2 1 = 0 0
2
0
3
4
5
4
(ii)
1
3 = 1 2
4
1
1
0
0
3
0
1
5
4
0
0
0
0
1
0
1 1 40
0
4 5 0 4 5
3
3
0
10 1 10 0
1 1
3 2
0
, 0 1
4
0
[2 marks]
3
0
Idea from A I to
0 1
M1
R1
0
0
1 2 5 4 3
get I A
1
R2
3 R1 R2 R2 2 R1 R3 R3
M1
A1
See two ERO carried out correctly
4
CONFIDENTIAL*
= I A
A1
1
3.(b)
B1
M1
A1
A1 3.(c)
(i) – 20 (ii) 10
B1 B1
4.(a) Given p(1 + 5i) – 2q = 3 + 7i, find the values of p and q if p and q are both real numbers. [3 marks] 4.(b) Express the complex number 3 i in the form r (cos i sin ) , where r is the modulus and is the argument of the complex number. Hence, simplify ( 3 i )5. 4.(a)
p – 2q = 3 and 5 p = 7 7 p 5 4 q 5
4.(b)
,
[5 marks] M1 A1 A1 M1
Either one correct
5
CONFIDENTIAL*
r=2
,
M1
6
i sin 6 6 5 5 32 cos i sin 6 6 3 i 2 cos
Both correct
A1 M1
16 3 16i
See k (cos 56
isin 56 )
A1
Show that the two curves 4 x2 + 9 y2 = 36 and 4 x2 – y2 = 4 have the same foci. For the hyperbola, state the equations of the asymptotes. [6 marks] 2 2 2 2 Sketch the curves 4 x + 9 y = 36 and 4 x – y = 4 on the same axes, showing clearly the asymptotes of the hyperbola. [4 marks]
5.
5
4 x + 9 y = 36
x
2
x
2
y
Centre is (0, 0)
Foci is ( 5 , 0) and ( 5 , 0)
The asymptotes are y = 2 x
1
M1
2
or
9 4 2 c =9-4 =5
=4
Centre is (0, 0)
36
– y
4 x
1 4 2 c =1+4 =5 Foci is ( 5 , 0) and ( 5 , 0)
y
or
2
M1 A1
either one correct both correct
A1
and y = - 2 x
B1 B1
y ●
● (-3, 0)
●
5, 0
(0, 2)
● (-1, 0)
● (1, 0)
5, 0 ●
● (3, 0)
x
●(0, - 2)
6.
D1 D1
Shape of ellipse Vertices and foci shown
D1 D1
Shape of hyperbola Vertices and asymptotes shown
The points A, B and C have position vectors a i j 2k , b 3i 2 j 4k and c i 4 j 4k respectively. Find :
(a) a b
[1 mark]
(b) (b a) (c a)
[3 marks]
6.(a)
a b = 13
B1
6.(b)
b a 2i j 2k ,
B1 B1
c a 2i 3 j 6k
6
CONFIDENTIAL*
(b a) (c a) =
i
j
k
2
1
2
M1
Determinant shown or any two components in answer correct
2 3 6 = 12i 8 j 8k
A1
7.(a) The polynomial Q( x) is defined by Q( x) = x³ + m x² + 5 x – n . If Q( x) has a quadratic factor ( x² + 5) and a zero of – 2 , find the values of m and n. [3 marks] 7.(b) Express cos x 2 sin x in the form R sin( x ) where R is positive and 0
. 2 Hence, state the maximum value of cos x 2 sin x as well as the corresponding value of x in the range 0 x
correct to two decimal places. 2 7.(c) Prove that cot tan 2 cot 2 .
[5 marks] [3 marks]
Hence or otherwise, solve the equation cot tan 12 for 0 360 .
7.(a)
x³ + mx² + 5x – n = (x² + 5)(x + 2) = x³ + 2x² + 5x + 10 By comparison, m = 2 , n = – 10
[4 marks]
M1 M1 A1
7.(b) Let R sin( x + α) cos x + 2 sin x R sin x cos α + R cos x sin α cos x + 2 sin x
R sin
α
= 1 -------- (1) = 2 -------- (2)
M1
Find R or α
A1
R or α correct
5 sin( x + 0.4636) Since the maximum value of sin( x + 0.4636) = 1
A1
CAO
B1
R cos α (1)2 + (2)2,
5 , R > 0
R = (1) ( 2)
R2 = 12 + 22
tan α =
,
α
1 2
= 0.4636
0<α<
2
cos x + 2 sin x
The maximum value of cos x + 2 sin x = and it occurs when x + 0.4636 = 2 x = 1.1072 1.11
7.(c)
cot θ – tan θ = = =
cos
B1
sin
sin cos cos 2 sin 2 sin cos cos 2 1 2
5
M1
Using cot θ and tan θ
M1
Using sin2θ
sin 2
= 2 cot 2θ
A1
7
CONFIDENTIAL*
cot θ – tan θ =
12
2 cot 2θ =
12
M1
2 cot 2θ = 2 3 cot 2θ = tan 2θ =
3 A1
1 3
For 0 360 , 0 2 720 2θ = 30 , 210 , 390 , 570
θ
8.
See equation in one variable term
A1
= 15 , 105 , 195 , 285
A1
5 2 r = 0 1 , 5 0
The line l has equation
.
1 (a) Show that l lies in the plane whose equation is r . 2 5 . 0
[3 marks]
(b) Find the position vector of A, the foot of the perpendicular from the origin O to l. [4 marks] (c) Find an equation of the plane containing O and l . [4 marks] (d) Find the position vector of the point P where l meets the plane whose equation 1
is r . 2 11. 2
[4 marks]
8(a) + λ
=
r
and
r •
= -5
For any point R on l with position vector r r
= M1 •
= -5 – 2λ + 2λ
= -5 r satisfies vector equation of plane, R is a point on the plane ∴ line l lies on the plane.
Get r and try checking if r satisfies equation of plane
A1
A1
(b) =
+ λ 1
•
=0
,
λ 1 ∈ ℝ
M1
Use idea of perpendicular
8
CONFIDENTIAL*
=0
•
M1
10 + 4 λ 1 + λ 1 = 0 λ 1 = -2
=
Scalar product
A1
-2
=
A1
(c) =
×
n
∴
=
M1
=
A1
equation of plane is
or (d)
r •
=
r •
=0
– 5 x
•
Find normal vector
M1
A1
Accept r
•
=0
+ 10 y + 5 z = 0
Since P is on line l , =
+ λ 2
,
λ 2 ∈ ℝ
1 Given that r . 2 11. 2 1 . 2 11. 2 5 + 2 λ 2 + 2 λ 2 + 10 = 11 λ 2 = - 1 = =
M1 M1 A1
-1
A1
Get position vector of point and substitute to equation of plane Scalar product to get λ 2