Useful notes about polar coordinates for people who want to take the SAT II Math Level 2 Subject TestFull description
Descripción completa
Descripción completa
TINJAUAN PUSTAKADeskripsi lengkap
Full description
KIMIA
KIMIADeskripsi lengkap
all about polar planimeter, measuring area using planimeterFull description
Full description
Descripción completa
menjelaakan tentang sistem kooerdinat polarDeskripsi lengkap
Find the expedition that matches your polar dreams, from the leader in cruise adventures to the Arctic, Antarctica and the North Pole.
Yustika Dyah Pratiwi State University of Malang Civil EngineeringDeskripsi lengkap
Full description
Alan SilvestriFull description
Descripción: historia de la empresa la polar
POLAR COORDINATES
Let f(r, θ, c) = 0 be the equation of family of curves. The DE of this family can be obtained by elimination of c, which is P dr + Q dθ = 0 (1) Where P and Q are function of r and θ. We know from calculus that if θ is the angle between the radius vector and the tangent to a curve of the given family at any point (r, θ), then d θ tan θ r
dr
If θ is the angle between the radius vector and 9 the tangent to an orthogonal trajectory at (r, θ), then θ 9 θ 9 9
tan θ 9
cot θ
tan θ 9 tan θ
9 For the two curves to be orthogonal. From eq (1), we have
θ d θ
dr
P
Q
r
d θ
rP
dr
Q
Hence the DE of the orthogonal trajectories is
r
d θ
Q
dr
rP
(2)
Solution of eq (2) is the required family of the orthogonal trajectories of the family f(r, θ, c) = 0
Find the eq eq of orthogonal trajectory of the curve curve r = a (1 + sin θ) (1) Soln: Differentiating the eq 9
d θ
9
dr
a cos θ
r
d θ
9
r cos θ
sin θ
9
sin θ
a cos θ
.as .a
DE of the orthogonal trajectories is
r
cos θ
d θ dr
9
dr r 9
is the DE of eq (1)
cos θ
dr
d θ
sin θ
sin θ
Separating the variables
(9
sin θ )d θ
dr
cos θ
r
secθ d θ ln(sec θ
tanθ d θ
dr r
tan θ ) ln cos θ (sec θ
tan θ )
cos θ
ln c c r
ln r
(
sin θ
9
cos θ cos θ cos θ
(9
sin θ )
c
9
9
r
sin
θ
)
(9
9
c
sin θ )
r
sin θ ) cos
r
(9 (9
(9
c
9
θ
sin θ )
sin θ )(9
sin θ )
c (9
sin θ )
r
is the eq of the orthogonal trajectory
c r
c r
Find the eq eq of orthogonal trajectory of the curve curve
a
r
(1)
cos θ
9
Soln: Differentiating the eq 9
a sin θ
(9
cos θ ) (9
d θ dr
.as .a
r ( 9 r ( 9
9
[
d θ dr
cos θ )
]
9
cos θ ) sin θ cos θ )
d θ dr
(9
(9
cos θ ) a sin θ
cos θ ) r sin θ
9
r
d θ
(9
cos θ ) is the DE of eq (1)
sin θ
dr
DE of the orthogonal trajectories is
r
sin θ
d θ dr
(9
cos θ )
Separating the variables
(9
9
cos θ )d θ
dr
sin θ
r
cscθ d θ
cotθ d θ
dr r
9
ln(csc θ cot θ ) sin θ
sin (9
r sin
9
9
sin θ cosθ
c ( sin θ r
θ
θ
ln r
r 9
cos θ )
ln c
c
(csc θ cotθ )
9
ln sin θ
9
c(9
cos θ )
sin θ
9
is the eq of the orthogonal trajectory
c
)
9
r
Find the eq eq of orthogonal trajectory of the curve curve 9
r
a sin 9 θ
EQUATION SOLVABLE FOR P
Equation solvable for Parameter P If
x
a cos θ
then we have
and 9
x
y
Parameter Geometrically
y
ˆ (θ ) r y
9
a sin θ a
9
and θ is called
a sin θ i ˆ
ˆ a sin θ j
ˆ (θ ) r
x
Consider first order DE with degree more than one or higher degree. In this section
dy dx
will be denoted by p and
dy dx 2
2
...and .... 5
dy dx
5
will be denoted
by p ...and .... p where p will be parameter. Here we will solve the first order DE with degree more than one or higher.
with following method: Solve the first order DE by factorizing the right side of the DE and take each factor seperately and then solve it. After solving each factor, multiply the solution of each factor and place them equal to zero.
Solve Soln:
2
x p 2
x p
2
6 y
xyp
2
xp( xp
2
0 2
0 0
3 xyp
2 xyp
6 y
3 y )
2( xp
2 y )
( xp
2 y )( xp
( xp
2 y )
0
3 y )
0
and ( xp
3 y )
0
x
dy dx
dy y
ln y y y
2
dy
2 y
x
dx
dy
x
y
3 y
dx
3
dx x
2 ln x ln c ln y
2
cx
2
cx
y
So the Soln is 2
3
cx )( x y
3 ln x
3
x 3 x y c
0 ( y
ln c c
c)
0 0
Solve Soln:
xyp
2
( x y ) p 1
0
xyp
2
xp yp 1
0
xyp
2
yp xp 1
0
yp( xp 1) ( xp 1)
( xp 1)( yp 1) xp
1
0
0
and ... yp
1
x
dy dx
dy y y y
1
dy
y
dx
dx
ydy
x y
(ln x ln c )
ln( cx )
So the Soln is
y
0 [ y
y
2
ln( cx )][ y
2
dx
2
2
ln cx
1
2
2 x
c x
2(c x ) 2c
2 x c ]
0
0
2
Solve Soln:
( x y ) p
2
( 2 y
y( y x )
( x y )( x y ) p y ( y x )
2
2
xy x ) p
0 2
( y
2
xy
y
2
0
( x y )( x y ) p
2
py( y x )
p( y x )( y x ) y( y x ) p( x y )[ p( x y ) y ]
( y x )[ p( y x ) y ]
0
0
2
x ) p
[ p( x y ) y x ][ p( y x ) y ]
0
p( x y ) y x 0......(1) and .... p( y x ) y Solving eq (1)