RESUMEN
El hierro y el acero son elementos utilizados para fabricar herramientas necesarias necesarias para diversos trabajos. En esta oportunidad se desarrollara el tema de acuerdo a las exigencias del lector. Tomando en cuenta desde su fabricación hasta aprovechamiento de producción en las siderurgias de los países encargados de trabajar con este material.
Es importante destacar el Acero como un elemento básico- natural no existe es producto de una aleación del hierro y el Carbono en diversidad de porcentajes (%) para determinar su utilidad. También se tiene en cuenta la fabricación del mis a través de un diagrama donde destaca los componente para la fundición del material básico (hierro) Fe. Y seguido de la aleación para la obtención del producto final A CERO
INTRODUCCIÓN
El acero se puede obtener a partir de dos materias primas fundamentales: • el arrabio, obtenido a partir de mineral en instalaciones dotadas de alto horno
(proceso integral); • las chatarras tanto férricas como inoxidables,
El tipo de materia prima condiciona el proceso de fabricación. En líneas generales, para fabricar acero a partir de arrabio se utiliza el convertidor con oxígeno, mientras que partiendo de chatarra como única materia prima se utiliza exclusivamente el horno de arco eléctrico (proceso electro-siderúrgico). Los procesos en horno de arco eléctrico pueden usar casi un 100% de chatarra metálica como primera materia [Steel Recycling Institute; 2000], convirtiéndolo en un proceso más favorable desde un punto de vista vi sta ecológico. Aun así, la media de las estadísticas actuales calcula que el 85% de las materias primas utilizadas en los hornos de arco eléctrico son chatarra metálica. La calidad de la chatarra depende de 2 factores: - Su facilidad para ser cargada en el horno - Su comportamiento de fusión (densidad de la chatarra, tamaño, espesor, forma
I.
MARCO TEORICO
1.1. CONCEPTOS 1.1.1. PROCESOS DE FABRICACION DEL ACERO Y FUNDICION
Para Fabricar Acero se tiene que echar en el alto horno una mezcla de mineral de hierro (con impurezas) y un combustible llamado Cok que además de ser combustible (es parecido al carbón), separa las impurezas del mineral de hierro (llamadas ganga) del resto de material que será hierro casi puro con una pequeña cantidad de carbono llamado arrabio (el carbono se acopla al acero en la combustión con el cok y se forma el acero). Además se suele echar algo de piedras de cal, que ayuda a eliminar aún más las impurezas.
Este arrabio será el acero que tendremos en estado líquido para pasar al siguiente proceso que será darle forma o moldearlo. Los desechos se llaman escoria y se suelen recoger para utilizarlas luego en otros procesos como por ejemplo para hacer cemento o para la construcción de carreteras.
También se puede fabricar acero a partir de chatarra, resultante de el reciclaje de acero. Las chatarras tienen que fundirse antes en un alto horno eléctrico para poder reutilizarse. Esta forma es la más económica en dinero y en recursos naturales.
La fabricación del acero en horno eléctrico se basa en la fusión de las chatarras por medio de una corriente eléctrica, y al afino posterior del baño fundido. El horno eléctrico consiste en un gran recipiente cilíndrico de chapa gruesa (15 a 30 mm de espesor) forrado de material refractario que forma la solera y alberga el baño de acero líquido y escoria. El resto del horno está formado por paneles refrigerados por agua. La bóveda es desplazable para permitir la carga de la chatarra a través de unas cestas adecuadas.
La bóveda está dotada de una serie de orificios por los que se introducen los electrodos, generalmente tres, que son gruesas barras de grafito de hasta 700 mm de diámetro. Los electrodos se desplazan de forma que se puede regular su distancia a la carga a medida que se van consumiendo. Los electrodos están conectados a un transformador que proporciona unas condiciones de voltaje e intensidad adecuadas para hacer saltar el arco, con intensidad variable, en función de la fase de operación del horno.
Otro orificio practicado en la bóveda permite la captación de los gases de combustión, que son depurados convenientemente para evitar contaminar la atmósfera. El horno va montado sobre una estructura oscilante que le permite bascular para proceder al sangrado de la escoria y el vaciado del baño. El proceso de fabricación se divide básicamente en dos fases: la fase de fusión y la fase de afino.
1.1.2. FASE DE FUSION
Una vez introducida la chatarra en el horno y los agentes reactivos y escorificantes (principalmente cal) se desplaza la bóveda hasta cerrar el horno y se bajan los electrodos hasta la distancia apropiada, haciéndose saltar el arco hasta fundir completamente los materiales cargados. El proceso se repite hasta completar la capacidad del horno, constituyendo este acero una colada. 1.1.3. FASE DE AFINO
El afino se lleva a cabo en dos etapas. La primera en el propio horno y la segunda en un horno cuchara. En el primer afino se analiza la composición del baño fundido y se procede a la eliminación de impurezas y elementos indeseables (silicio, manganeso, fósforo, etc.) y realizar un primer ajuste de la composición química por medio de la adición de ferroaleaciones que contienen los elementos necesarios (cromo, níquel, molibdeno, vanadio o titanio). El acero obtenido se vacía en una cuchara de colada, revestida de material refractario, que hace la función de cuba de un segundo horno de afino en el que termina de ajustarse la composición del acero y de dársele la temperatura adecuada para la siguiente fase en el proceso de fabricación. 1.1.4. LA COLADA CONTINUA
Finalizado el afino, la cuchara de colada se lleva hasta la artesa receptora de la co lada continua donde vacía su contenido en una artesa receptora dispuesta al efecto. La colada continua es un procedimiento siderúrgico en el que el acero se vierte directamente en un molde de fondo desplazable, cuya sección transversal tiene la forma
geométrica del semiproducto que se desea fabricar; en este caso la palanquilla. La artesa receptora tiene un orificio de fondo, o buza, por el que distribuye el acero líquido en varias líneas de colada, cada una de las cuales dispone de su lingotera o molde, generalmente de cobre y paredes huecas para permitir su refrigeración con agua, que sirve para dar forma al producto. Durante el proceso la lingotera se mueve alternativamente hacia arriba y hacia abajo, con el fin de despegar la costra sólida que se va formando durante el enfriamiento. Posteriormente se aplica un sistema de enfriamiento controlado po r medio de duchas de agua fría primero, y al aire después, cortándose el semiproducto en las longitudes deseadas mediante sopletes que se desplazan durante el corte. En todo momento el semiproducto se encuentra en movimiento continuo gracias a los rodillos de arrastre dispuestos a los largo de todo el sistema. Finalmente, se identifican todas las palanquillas con el número de referencia de la colada a la que pertenecen, como parte del sistema implantado para determinar la trazabilidad del producto, vigilándose la cuadratura de su sección, la sanidad interna, la ausencia de defectos externos y la longitud obtenida. 1.1.5. LA LAMINACION
Las palanquillas no son utilizables directamente, debiendo transformarse en productos comerciales por medio de la laminación o forja en caliente. De forma simple, podríamos describir la laminación como un proceso en el que se hace pasar al semiproducto (palanquilla) entre dos rodillos o cilindros, que giran a la misma velocidad y en sentidos contrarios, reduciendo su sección transversal gracias a la presión ejercida por éstos. En este proceso se aprovecha la ductilidad del acero, es decir, su capacidad de deformarse, tanto mayor cuanto mayor es su temperatura. De ahí que la laminación en caliente se realice a temperaturas comprendidas entre 1.250ºC, al inicio del proceso, y 800ºC al final del mismo. La laminación sólo permite obtener productos de sección constante, como es el caso de las barras corrugadas. El proceso comienza elevando la temperatura de las palanquillas mediante hornos de recalentamiento hasta un valor óptimo para ser introducidas en el tren de laminación. Generalmente estos hornos son de gas y en ellos se distinguen tres zonas: de
precalentamiento, de calentamiento y de homogeneización. El paso de las palanquillas de una zona a otra se realiza por medio de distintos dispositivos de avance. La atmósfera en el interior del horno es oxidante, con el fin de reducir al máximo la formación de cascarilla. Alcanzada la temperatura deseada en toda la masa de la palanquilla, ésta es conducida a través de un camino de rodillos hasta el tren de laminación. Este tren está formado por parejas de cilindros que van reduciendo la sección de la palanquilla. Primero de la forma cuadrada a forma de óvalo, y después de forma de óvalo a forma redonda. A medida que disminuye la sección, aumenta la longitud del producto transformado y, por tanto, la velocidad de laminación. El tren se controla de forma automática, de forma que la velocidad de las distintas cajas que lo componen va aumentando en la misma proporción en la que se redujo la sección en la anterior. El tren de laminación se divide en tres partes:
Tren de desbaste: donde la palanquilla sufre una primera pasada muy ligera para romper y eliminar la posible capa de cascarilla formada durante su permanencia en el horno. Tren intermedio: formado por distintas cajas en las que se va conformando por medio de sucesivas pasadas la sección. Tren acabador: donde el producto experimenta su última pasada y obtiene su geometría de corrugado.
Las barras ya laminadas se depositan en una gran placa o lecho de enfriamiento. De ahí, son trasladadas a las líneas de corte a medida y empaquetado y posteriormente pasan a la zona de almacenamiento y expedición. En el caso de la laminación de rollos, éstos salen del tren acabador en forma de espira, siendo transportados por una cinta enfriadora, desde la que las espiras van siendo depositadas en un huso, donde se compacta y se ata para su expedición, o bien se lleva a una zona de encarretado, dónde se forman bobinas en carrete. Durante la laminación se controlan los distintos parámetros que determinarán la calidad del producto final: la temperatura inicial de las palanquillas, el grado de deformación de cada pasada —para evitar que una deformación excesiva dé lugar a roturas o agrietamientos del material—, así como el grado de reducción final, que define el grado de forja, y sobre todo el sistema de enfriamiento controlado. FLUJOS DE MATERIA DEL PROCESO DE FABRICACIÓN DEL ACERO
Para producir una tonelada de acero virgen se necesitan 1500kg de ganga de hierro, 225kg de piedra caliza y 750kg de carbón (en forma de coque) [Lawson, B.; 1996] La obtención del acero pasa por la eliminación de las impurezas que se encuentran en el arrabio o en las chatarras, y por el control, dentro de unos límites especificados según el tipo de acero, de los contenidos de los elementos que influyen en sus propiedades. Las reacciones químicas que se producen durante el proceso de fabricación del acero requieren temperaturas superiores a los 1000ºC para poder eliminar las sustancias perjudiciales, bien en forma gaseosa o bien trasladándolas del baño a la escoria.
Por cada tonelada de bloque de acero fabricado se generan: 145kg de escoria, 230kg de escoria granulada, aproximadamente 150 000 litros de agua residual y alrededor de 2 toneladas de emisiones gaseosas (incluyendo CO2, óxidos sulfurosos y óxidos de nitrógeno)
Los valores del desglose de las emisiones gaseosas de la tabla 5.2 han sido obtenidos a partir de las estadísticas de emisiones de la industria de hierro y acero del Reino Unido en el año 1997 y la producción de acero de dicha industria ese año (datos publicados por
el gobierno del Reino Unido y actualizados según los factores de conversión indicados por el mismo). EL RECICLADO DE LOS MATERIALES DE CONSTRUCCIÓN Es importante estudiar las posibilidades de cada material constructivo para mejorar su impacto ambiental a través del reciclaje. Especialmente teniendo en cuenta la limitación de oportunidades para depositar los residuos y la creciente necesidad de preservar nuestros recursos naturales.
OPCIONES DE RECICLADO DEL ACERO Este apartado se centra en el tratamiento de los residuos de construcción, en las opciones de reciclado posibles y en su inclusión en el análisis de ciclo de vida. Al ser un material de alta intensidad energética, el acero tiene un alto potencial para ser reciclado. El acero, se puede reciclar técnicamente un número indefinido de veces, casi sin degradación en la calidad.
Aún así, la oxidación reduce la cantidad de material no oxidado. Mientras que prácticamente el 100% de los desechos de acero podrían ser re-introducidos en la industria, el porcentaje de acero reciclado se estima del 46%. Considerando la relativa facilidad con la que el acero puede ser reciclado y las ventajas obtenidas cuando se utiliza acero reciclado (requiere cuatro veces más energía producir acero de mineral virgen que reciclarlo [Green Networld, 1999]), resulta claro que hay muchas posibilidades de mejora. Las propiedades metálicas del acero son ventajosas ya que permiten que la separación del acero sea físicamente viable tanto en flujos de desecho como en plantas de construcción o demolición usando imanes para separar el metal del resto de residuos. La naturaleza magnética de los metales férricos facilita la separación y manejo durante el reciclado. Además, la escoria generada en el proceso de producción del acero, también puede ser reciclada, y se usa actualmente como sustituto de cemento o áridos en la construcción de carreteras y muros. Esta utilización es enormemente beneficiosa debido, por un lado, a la significativa reducción en la emisión de dióxido de carbono que de otra forma seria generado debido a la calcinación del mineral calcáreo, y por otro lado, a la reducción de
escoria residual. Se estima que la creación de una tonelada de escoria (durante la producción de 3,5 toneladas de metal fundido) ahorra entre 3 y 5 GJ de energía y puede evitar la cocción de 1000 kg de calcárea, que tiene el potencial de generar entre 900 y 1200 kg de dióxido de carbono
1.3.
LA FRESADORA
Existen diversos tipos de fresadoras (de superficie, ranuradoras, engalletadoras, y universales). Nosotros vamos a tratar exclusivamente las fresadoras de superficie pues son las más versátiles y adecuadas para el aficionado. Con ellas podremos fresar desde ranuras, cantos y perfiles, hasta el fresado de orificios alargados y el fresado copiador con plantilla. Se pueden fresar los más diversos materiales: madera, MDF, metal, plástico, acrílico, placas de pladur y muchos otros.
Las principales características de una fresadora son:
1.- POTENCIA. Para fresar maderas blandas y aglomerados, bastará una potencia de unos 500 w. Para fresar otros materiales como por ejemplo DM, maderas duras, plásticos, acrílicos, pladur, etc, será necesaria más potencia (a partir de unos 800 w).
2.- VELOCIDAD. Es importante que tengan regulación electrónica de velocidad o por lo menos varias velocidades, para adaptar ésta al tipo y dureza del material que estemos trabajando. La velocidad máxima debe ser como mínimo de unas 22.000 r.p.m.
3.- LONGITUD DE CARRERA. O lo que es lo mismo, la profundidad de corte. Es muy importante escoger una máquina que tenga una profundidad de corte máxima acorde con los trabajos que vayamos a realizar. Esta profundidad de corte máxima debe ser de al menos 40 mm, llegando algunas máquinas hasta los 65 mm. La guía de profundidad debe tener un buen ajuste. Algunas máquinas vienen con reloj comparador o reglaje micrométrico para ajustes muy finos de profundidad.
4.- DIÁMETRO DE LA PINZA. Es muy recomendable que tenga pinzas de 6 y 8 mm para poder adaptar un mayor número de fresas. Para trabajos mayores, también las hay con pinza de 12 mm. Para este último caso la fresadora debe tener unos 1400 w de potencia por lo menos. Para trabajos de bricolaje, con pinza de 6 y 8 mm será suficiente.
5.- PESO. Cuanto menos peso, más manejable será la máquina, y cuanto más peso, más estable. Para bricolaje es recomendable un peso contenido, entre 2 y 4 Kg aproximadamente.
6.- ACCESORIOS. La guía paralela es imprescindible, y normalmente la traen de serie. Otros accesorios interesantes pueden ser: el casquillo copiador o guía para plantillas (para hacer formas curvas), la guía para hacer círculos, la aspiración de polvo, etc.
Otras características como la facilidad de manejo, la comodidad o la suavidad del motor sólo se pueden comparar con la máquina en marcha. Algunas fresadoras son convertibles en amoladoras cambiando la base y acoplándole el disco de amolar. Importante también es la marca, no solo por fiabilidad y garantía, sino por el servicio post-venta. Nuestra recomendación es que se compren fresadoras de marcas reconocidas.
1.2.1. MEDIDAS DE SEGURIDAD
Aparte de las medidas de seguridad de todas las herramientas eléctricas (no tirar del cable, no ponerla cerca de fuentes de humedad ni de calor, etc), como normas básicas para la utilización segura de la fresadora podemos citar las siguientes:
1.- Protegerse la vista con gafas adecuadas y ponerse mascarilla.
2.- Utilizar la máquina siempre con las dos manos.
3.- Hacer avanzar la fresadora con ritmo uniforme y poca presión.
4.- Desenchufar la máquina y esperar a que pare la fresa antes de cualquier manipulación (cambio de fresa, limpieza, etc).
5.- Quitar la fresa siempre que acabe de trabajar.
1.2.2. TIPOS Y CLASIFICACIONES
Existen muchísimos tipos de fresas según su forma y su tamaño. Para hacerse una idea de lo se puede hacer con ellas, le presentamos a continuación el programa completo de BOSCH de fresas profesionales:
Las fresadoras pueden clasificarse según varios aspectos, como la orientación del eje de giro o el número de ejes de operación. A continuación se indican las clasificaciones más usuales. Fresadoras según la orientación de la herramienta Dependiendo de la orientación del eje de giro de la herramienta de corte, se distinguen tres tipos de fresadoras: horizontales, verticales y universales. Una fresadora horizontal: utiliza fresas cilíndricas que se montan sobre un eje horizontal accionado por el cabezal de la máquina y apoyado por un extremo sobre dicho cabezal y por el otro sobre un rodamiento situado en el puente deslizante llamado carnero. Esta máquina permite realizar principalmente trabajos de ranurado, con diferentes perfiles o formas de las ranuras. Cuando las operaciones a realizar lo permiten, principalmente al realizar varias ranuras paralelas, puede aumentarse la productividad montando en el eje portaherramientas varias fresas conjuntamente formando un tren de fresado. La profundidad máxima de una ranura está limitada por la diferencia entre el radio exterior de la fresa y el radio exterior de los casquillos de separación que la sujetan al eje portafresas.
En una fresadora vertical, el eje del husillo está orientado verticalmente, perpendicular a la mesa de trabajo. Las fresas de corte se montan en el husillo y giran sobre su eje. En general, puede desplazarse verticalmente, bien el husillo, o bien la mesa, lo que permite profundizar el corte. Hay dos tipos de fresadoras verticales: las fresadoras de banco fijo o de bancada y las fresadora de torreta o de consola. En una fresadora de torreta, el husillo permanece estacionario durante las operaciones de corte y la mesa se mueve tanto horizontalmente como verticalmente. En las fresadoras de banco fijo, sin embargo, la mesa se mueve sólo perpendicularmente al husillo, mientras que el husillo en sí se mueve paralelamente a su propio eje.
Una fresadora universal tiene un husillo principal para el acoplamiento de ejes portaherramientas horizontales y un cabezal que se acopla a dicho husillo y que convierte la máquina en una fresadora vertical. Su ámbito de aplicación está limitado principalmente por el costo y por el tamaño de las piezas que se pueden trabajar. En las fresadoras universales, al igual que en las horizontales, el puente es deslizante, conocido en el argot como carnero puede desplazarse de delante a detrás y viceversa sobre unas guías.
Fresadoras especiales
Además de las fresadoras tradicionales, existen otras fresadoras con características especiales que pueden clasificarse en determinados grupos. Sin embargo, las formas constructivas de estas máquinas varían sustancialmente de unas a otras dentro de cada grupo, debido a las necesidades de cada proceso de fabricación.
Las fresadoras circulares tienen una amplia mesa circular giratoria, por encima de la cual se desplaza el carro portaherramientas, que puede tener uno o varios cabezales verticales, por ejemplo, uno para operaciones de desbaste y otro para operaciones de acabado. Además pueden montarse y desmontarse piezas en una parte de la mesa mientras se mecanizan piezas en el otro lado.
Las fresadoras copiadoras disponen de dos mesas: una de trabajo sobre la que se sujeta la pieza a mecanizar y otra auxiliar sobre la que se coloca un modelo. El eje vertical de la herramienta está suspendido de un mecanismo con forma de pantógrafo que está conectado también a un palpador sobre la mesa auxiliar. Al seguir con el palpador el contorno del modelo, se define el movimiento de la herramienta que mecaniza la pieza. Otras fresadoras copiadoras utilizan, en lugar de un sistema mecánico de seguimiento, sistemas hidráulicos, electro-hidráulicos o electrónicos.
En las fresadoras de pórtico, también conocidas como fresadoras de puente, el cabezal portaherramientas vertical se halla sobre una estructura con dos columnas situadas en lados opuestos de la mesa. La herramienta puede moverse verticalmente y transversalmente y la pieza puede moverse longitudinalmente. Algunas de estas fresadoras disponen también a cada lado de la mesa sendos cabezales horizontales que pueden desplazarse verticalmente en sus respectivas columnas, además de poder prolongar sus ejes de trabajo horizontalmente. Se utilizan para mecanizar piezas de grandes dimensiones.
En las fresadoras de puente móvil, en lugar de moverse la mesa, se mueve la herramienta en una estructura similar a un puente grúa Se utilizan principalmente para mecanizar piezas de grandes dimensiones.
Una fresadora de madera es una que utiliza una herramienta rotativa para realizar fresados en superficies planas de madera. Son empleadas en bricolaje y ebanistería para realizar ranurados, como juntas de cola de milano o machihembrados; cajeados, como los necesarios para alojar cerraduras o bisagras en las puertas; y perfiles, como molduras. Las herramientas de corte que utilizan son fresas para madera, con dientes mayores y más espaciados que los que tienen las fresas para metal.
Fresadoras según el número de ejes
Las fresadoras pueden clasificarse en función del número de grados de libertad que pueden variarse durante la operación de arranque de viruta.
Fresadora de tres ejes. Puede controlarse el movimiento relativo entre pieza y herramienta en los tres ejes de un sistema cartesiano.
Fresadora de cuatro ejes. Además del movimiento relativo entre pieza y herramienta en tres ejes, se puede controlar el giro de la pieza sobre un eje, como con un mecanismo divisor o un plato giratorio. Se utilizan para generar superficies con un patrón cilíndrico, como engranajes o ejes estriados.
Fresadora de cinco ejes. Además del movimiento relativo entre pieza y herramienta en tres ejes, se puede controlar o bien el giro de la pieza sobre dos ejes, uno perpendicular al eje de la herramienta y otro paralelo a ella (como con un mecanismo divisor y un plato giratorio en una fresadora vertical); o bien el giro de la pieza sobre un eje horizontal y la inclinación de la herramienta alrededor de un eje perpendicular al anterior. Se utilizan para generar formas complejas, como el rodete de una turbina Francis.
Rectificadoras planas o de superficie
Estas máquinas son las que presentan el manejo más sencillo, ya que constan solamente de un carro longitudinal que otorga el movimiento de translación a la pieza y la muela, que imprime el movimiento de rotación. Se distinguen dos subtipos según la posición de la muela:
a) Rectificadoras frontales: la muela gira sobre un husillo vertical, trabaja plana contra la pieza y se desplaza con un movimiento rectilíneo. Se utilizan generalmente para la eliminación rápida del material, aunque algunas máquinas pueden lograr una elevada precisión.
b) Rectificadoras tangenciales: la muela gira sobre un husillo horizontal, trabaja de canto sobre la pieza y se desplaza con un movimiento circular y pendular. Se utilizan para t rabajos de alta
precisión en superficies planas sencillas, superficies abocinadas o inclinadas, ranuras, superficies planas próximas a hombros, superficies empotradas y perfiles.
Estas rectificadoras se emplean para piezas planas, generalmente mecanizadas en otras máquinas del taller, como tornos, fresadoras y limadoras. Las piezas fijan a la mesa mediante una placa de sujeción magnética y se pueden mover manual o mecánicamente bajo la muela abrasiva. La máquina está provista de una bomba interna y una red de tubos para la aplicación y recirculación automática de un líquido refrigerante para la pieza y la muela. La figura de abajo esquematiza las partes principales de una rectificadora tangencial.
Las piezas mecanizadas con este tipo de rectificadoras son, por ejemplo, cojinetes, matrices, guías, placas, aros o segmentos de pistón, moldes, pines y perfiles para utillajes. Las
dimensiones de las piezas pueden variar entre 40 cm y 6 metros de largo, y entre 70-80 cm y 1 metro de largo, lo que da una idea de las dimensiones y solidez de las máquinas.
2) Rectificadoras cilíndricas La rectificadora cilíndrica puede funcionar de una variedad de formas, sin embargo, la pieza debe tener un eje central de rotación. Esto incluye pero no se limita a las formas tales como un cilindro, un cono, una elipse, una leva o un cigüeñal. También se distinguen varios subtipos:
a) Rectificadoras cilíndricas externas: el rectificado se realiza en la superficie externa de una pieza entre centros, los cuales permiten la rotación de la misma. A su vez, la muela también gira en la misma dirección cuando entra en contacto con la pieza, tal como muestra la siguiente figura.
b) Rectificadoras cilíndricas internas: el rectificado se realiza en el interior de una pieza. La muela abrasiva es siempre menor que el ancho de la pieza. Un anillo metálico sostiene a la pieza, imprimiéndole el movimiento, como indica la siguiente figura.
Donde:
a) cabezal del husillo portapieza; b)
b) anillo metálico de sujeción;
c)
c) pieza;
d)
d) muela;
e)
e) husillo portamuela; y
f)
f) cabezal del husillo portamuela.
c) Rectificadoras sin centros: este tipo de máquinas rectifican piezas cilíndricas de dimensiones pequeñas, como casquillos, bulones o pasadores. El mecanismo consta de dos muelas que giran en el mismo sentido, entre medio de las cuales se coloca la pieza, sin sujeción (por eso el mecanismo se denomina “sin centros”) que gir a en sentido opuesto al de las muelas,
impulsada por el movimiento de la muela de arrastre, que está inclinada un cierto ángulo de entre 1 y 5 grados, dependiendo de la dureza del material a rectificar y del diámetro de la pieza. La figura de abajo muestra un esquema del proceso.
Donde:
a) guía; b) muela; c) muela de arrastre y se observa la pieza cilíndrica entre ambas muelas.
Rectificadoras universales
Se trata de las máquinas que ofrecen mayor capacidad de trabajo, ya que mecanizan cuerpos de revolución. Con estas máquinas de gran robustez y envergadura se logra el rectificado tanto de exteriores como interiores de árboles de levas, cigüeñales, interiores de cilindros, conos, camisas y muchas otras piezas.
El carro longitudinal de la máquina proporciona el movimiento de traslación a las piezas en rotación a través de su avance y retorno automático provisto por un mecanismo hidráulico, mientras las muelas reciben el movimiento de rotación, opuesto al de la pieza. La dureza o las características de las piezas definen la velocidad de rotación del eje por medio de reguladores de velocidad. La figura de abajo esquematiza las partes principales de una rectificadora universal.
Rectificadoras especiales
Para el rectificado de piezas con cierta geometría mecánica o que contienen orificios y que no pueden girar sobre sí mismas se utilizan máquinas especiales, cuyo tamaño es por lo general de pequeñas dimensiones y envergadura, que reciben el nombre de rectificadoras especiales. Poseen un husillo vertical (a veces denominado husillo planetario) cuya muela, además de girar, realiza una traslación circular. Estas máquinas se utilizan, por ejemplo, para rectificar una infinidad de piezas, tales como, entre otros, dientes de engranajes, perfiles, ruedas dentadas, roscas, cilindros de laminación, guías de bancada, pastillas de freno, estrías, fresas madre, rodamientos, radios, álabes de turbina y trenes de aterrizaje de aviones.
En lo que respecta a la principal herramienta de las rectificadoras, la muela, existe una variedad de muelas de diversas formas y tamaño de grano, todas normalizadas por estándares internacionales, cuyas características veremos en próximos artículos.
1.3.
RECTIFICADORAS CON SISTEMA DE CONTROL CNC
Hoy en día, el avance tecnológico ha introducido en el mercado las rectificadoras con control CNC para todos los tipos vistos más arriba, las cuales reúnen una serie de ventajas con respecto a las convencionales, entre las que podemos mencionar:
unificación de movimientos para el rectificado (superior, frontal e inferior) en una sola máquina total automatización, con mínima intervención del operario mayores dimensiones de la máquina, lo que posibilita rectificar piezas de gran tamaño sistemas de sujeción magnética de la pieza disponibilidad de diversas formas de bancadas o mesas de trabajo mejoramiento de los tiempos y la precisión del rectificado incoporación de servomores para cada eje, lo que permite un posicionamiento más preciso de la pieza control automático del estado de las muelas posibilidad de programar coordenadas cartesianas y establecer la distancia exacta de rectificado funcionamiento en un entorno cerrado, sin proyección externa de virutas, polvo o residuos
II.
CONCLUSION
Para concluir, para elaborar el acero se toman muchos procesos, pero el proceso crítico durante la elaboración es la fundición debido a que en esta parte se convierte en ferroaleaciones para que luego pase al horno y se convierta en hierro.
La finalidad de este apartado es recoger todos los datos necesarios para la realización posterior del Análisis de ciclo de vida de una estructura de hormigón armado. En la comparación acero-hormigón hay que tener en cuenta que la media de densidades entre acero y hormigón son distintas y que, aunque los valores basados en la unidad de masa proporcionan una base común para la comparación, estos valores no son totalmente equiparables debido a la diferente cantidad de cada material necesaria en la estructura de la que será analizado el ciclo de vida.
III.
REFERENCIAS BIBLIOGRAFICAS
Tipos de fresadoras RECUPERADO DE: https://arukasi.wordpress.com/2011/09/08/66/
Elaboración del hierro y acero RECUPERADO DE : https://upcommons.upc.edu/bitstream/handle/2099.1/3319/558687.pdf?sequence=7
Como funcionan las rectificadoras RECUPERADO DE : http://www.demaquinasyherramientas.com/maquinas/rectificadoras-tipos-yusos
Manual de auditoria del acero RECUPERDADO DE: http://www.monografias.com/trabajos45/hierro-y-acero/hierro-y-acero.shtml