Discussion part for experiment properties of alkenesFull description
This document briefly explains properties of aggregate.Full description
This lecture slides describes the properties of dry gas from the reservoirFull description
Class 11 CBSE NotesFull description
Properties of Lubricating Oil
hc verma Hindi
Concrete Tests and Analysis on site, Concrete Design Mix, Concrete Slump TestFull description
VCI Prescribed syllabusFull description
Full description
Full description
Full description
mekanika reservoar
Magical workings of woodDescripción completa
this gives the data required for chapter 2 i.e design properties of materialsFull description
Descripción completa
Bulk Properties of PowdersDescrição completa
Discussion part for experiment properties of alkenesFull description
Descripción completa
D Properties of Plane Areas
Notation:
y
1
Rectangle
h
C
y
x
(Origin of axes at centroid) b
x 2
A bh
x
A area x , y distances to centroid C I x , I y moments of inertia with respect to the x and y axes, respectively I xy product of inertia with respect to the x and y axes I P I x I y polar moment of inertia with respect to the origin of the x and y axes I BB moment of inertia with respect to axis B-B
bh3 I x 12
h
y 2
hb3 I y 12
I xy 0
bh I P (h2 b2) 12
b y
2
Rectangle
B
(Origin of axes at corner)
bh3 I x 3 h O B
3
I BB
x
b2h2 I xy 4
bh I P (h2 + b2) 3
3
b h 6(b h ) 2
2
b y
3
Triangle c
bh A 2
x h C y b
966
hb3 I y 3
x
bh3 I x 36
(Origin of axes at centroid) bc
x 3
h
y 3
bh I y (b2 bc c2) 36
bh2 I xy (b 2c) 72
bh I P (h2 b2 bc c2) 36
APPENDIX D
y
4
Triangle
c B
B h
O
x
b y
5
bh3 I x 12
(Origin of axes at vertex) bh I y (3b2 3bc c2) 12
bh2 I xy (3b 2c) 24
Isosceles triangle bh A 2
x h C
y
B
x B
b
bh3 I x 36
bh3 I BB 4
(Origin of axes at centroid)
b
x 2
h
y 3
hb3 I y 48
I xy 0 bh3 I BB 12
bh I P (4h2 3b2) 144
( Note: For an equilateral triangle, h 3 b /2.) y
6
x
h
C
y
B
x B
b
B
b
bh3 I x 36
bh3 I x 12
h
x 3
x
h
y 3
hb3 I y 36
b2h2 I xy 72 bh3 I BB 12
(Origin of axes at vertex)
hb3 I y 12
bh I P (h2 b2) 12
b2h2 I xy 24 bh3 I BB 4
b y
8
Trapezoid
a
h
bh A 2
Right triangle
B
O
(Origin of axes at centroid)
bh I P (h2 b2) 36
y
7
Right triangle
C
h(a b) A 2 y
x B
B b
(Origin of axes at centroid)
I x
h(2a b) y 3(a b)
h3(a2 4ab b2) 36(a b)
I BB
h3(3a b)
1 2
Properties of Plane Areas
967
968
APPENDIX D
9
y
Properties of Plane Areas
Circle
d = 2r
p d 2 A p r 2 4
r x
C B
I xy
B y
10
r
0
I P
Semicircle
C y
x
B
2
I x
y
B
y
B x
O
I BB
4
5p r 4 5p d 4 4 64
p r 4 I y 8
(9p 64)r 0.1098r 72p
p r 2 A 4 C
p r 4 p d 4 2 32
4r y 3p 4
Quarter circle x
p r 4 p d 4 I x I y 4 64
(Origin of axes at centroid)
p r 2 A 2
B 11
(Origin of axes at center)
I xy 0
p r 4 I BB 8
(Origin of axes at center of circle)
4r x y 3p
p r 4 I x I y 16
r 4 I xy 8
2
I BB
4
(9p 64)r 0.05488r 144p
4
r y
12
Quarter-circular spandrel
B
B
r x C
y x
O y
13
x
a
x
A a r 2
C a x
(10 3p )r y 3(4 p ) 0.2234r
2r 0.7766r 3(4 p )
5p I x 1 r 4 0.01825r 4 16
I y I BB
1 3
p 4 r 0.1370r 4 16
(Origin of axes at center of circle)
a angle in radians
r O
Circular sector x
y
p A 1 r 2 4
(Origin of axes at point of tangency)
(a p /2)
x r sin a
r 4 I x (a sin a cos a ) 4
2r sin a y 3a r 4 I y (a sin a cos a ) 4
I xy 0
a r 4 I P 2
APPENDIX D
Circular segment
y
14
y
a
(Origin of axes at center of circle)
a angle in radians
C
(a p /2)
2r sin3 a y 3 a sin a cos a
A r 2(a sin a cos a )
a r
r 4 I x (a sin a cos a 2 sin3 a cos a ) 4
x
O
Properties of Plane Areas
I xy 0
r 4 I y (3a 3 sin a cos a 2 sin3 a cos a ) 12 15
a
y
Circle with core removed a angle in radians
r
a
C
a a arccos r
b x
a b
(Origin of axes at center of circle)
(a p /2)
3ab r 4 I x 3a 6 r 2
2ab3 r
4
ab A 2r 2 a r 2
b r 2 a 2
2ab3 r 4 ab I y a 2 r 2 r 4
2a y
16
Ellipse A p ab
b C
x b
a
(Origin of axes at centroid)
I xy 0
a
p a b 3 I x 4
p b a 3 I y 4
p ab I P (b2 a2) 4
Circumference p [1.5( a
b) a b]
4.17b / a 4a 2
17 y
Parabolic semisegment
ertex V y = f ( x )
x
h
C O
y b
x
(0 b a /3)
(Origin of axes at corner)
x 2 y f ( x ) h 1 b2
2 bh A 3 16bh3 I x 105
3b x 8
( a /3 b a)
2h y 5
2hb3 I y 15
b2h2 I xy 12
I xy 0
969
970
APPENDIX D
18
Properties of Plane Areas
Parabolic spandrel
y = f ( x ) x
h x 2 y f ( x ) b2
h
ertex V
y
C
O
3b x 4
bh 3
x A b
bh3 I x 21 y
19
hb3 I y 5
x n y f ( x ) h 1 bn
x h
C
y
b2h2 I xy 12
b
I x
y
n
x
n1
3
h x n y f ( x ) bn
x
h C
y
O
21
I x
3
h
C
x B I
y
B b
b
x
y
d = 2r
t
I xy 0
b2h2 I xy 4(n 1)
p h
y 8
8bh3 I BB 9p
p d 3t I x I y p r 3t 8
p d 3t I P 2p r 3t 4
4 32 I y hb3 0.2412hb3 p p 3
Thin circular ring (Origin of axes at center) Approximate formulas for case when t is small
x
C
2
2
b h n 4(n 1)(n 2)
(Origin of axes at centroid)
A 2p r t p dt
r
2
I xy
h(n 1) y 2(2n 1)
8 p 3 3 bh 0.08659bh 9p 16
I xy 0
hb3n I y 3(n 3)
(Origin of axes at point of tangency)
hb3 I y n3
4bh A p
hn
y 2n 1
(n 0)
bh 3(3n 1)
Sine wave
y
b(n 1) 2(n 2)
b(n 1) x n2
bh A n1 x
b
(n 0)
3
Spandrel of nth degree y = f ( x )
(Origin of axes at corner)
2bh n (n 1)(2n 1)(3n 1)
A bh x
O
22
3h y 10
Semisegment of nth degree y = f ( x )
20
(Origin of axes at vertex)
APPENDIX D
23
t B
C b y
b
b angle in radians
x
O
I x r 3t (b sin b cos b )
2b sin2b 2
1 cos2b b
Thin rectangle (Origin of axes at centroid) Approximate formulas for case when t is small A bt
b
b C
x t
B
I y r 3t ( b si n b co s b )
I BB r 3t
I xy 0 y
( Note: For a semicircular arc, b p /2.)
r sin b y b
A 2b rt
r
24
971
Thin circular arc (Origin of axes at center of circle) Approximate formulas for case when t is small
y
B
Properties of Plane Areas
t b3 I x sin2 b 12
t b3 I y cos2 b 12
tb3 I BB sin2 b 3
B
Regular polygon with n sides
25
A b R1
(Origin of axes at centroid)
B
C centroid (at center of polygon)
b
n number of sides (n 3)
R2
b length of a side
b central angle for a side C a
360° b n
a
a interior angle (or vertex angle)
n2 180° n
a b 180°
R1 radius of circumscribed circle (line CA) b b R1 csc 2 2
b b R2 cot 2 2
R2 radius of inscribed circle (line CB)
b nb2 A cot 4 2
I c moment of inertia about any axis through C (the centroid C is a principal point and every axis through C is a principal axis)