Kunci jawaban
1. Kelompokkan kedua set data berikut ini dengan menggunakan diagram batang daun. a. 22, 17, 17, 18, 18, 35, 35, 50 dan 56 b. 32, 35, 35, 8, 24, 49, dan 41 Jawab: Kedua set data diatas dapat digabung pada batang yang sama (back-to-back stem plots).
Daun (b) 8
Batang 0 1 4 2 5 2 3 9 1 4 5
2. Diberikan data dari hasil pengukuran tinggi dicatat dalam satuan centimeter. 155 162 147 170 154 155 165 157 156 161 168 150 153 151 153 162 158 167 156 160 163 166 150 154 146 143 155 163 158 174
Daun (a) 7 8 2 5 0 6 badan 50 siswa SMA. Pengukuran 160 147 158 160 144
159 154 164 155 157
149 167 153 151 162
173 165 159 163 157
Bentuklah tabel distribusi frekuensinya Jawab: a. Tabel distribusi frekuensi i. Jangkauan Tinggi minimum = 143 cm dan tinggi maksimium = 174 cm Jangkauan = 174 cm – 143 cm = 31 cm ii. Banyak interval kelas: n = 50 siswa k = 1 + 3,3 log n = 1 + 3,3 log 50 = 1 + 3,3 1,699 = 1 + 5,606 k = 6,606 = 7
= 4,428 =5
iii.
Panjang interval kelas =
iv.
Batas bawah kelas diambil 140
Dari data-data tersebut dapat disusun tabel distribusi frekuensi sebagai berikut ini.
Interval kelas (tinggi(cm)) 140 – 144 145 – 149 150 – 154 155 – 159 160 – 164 165 – 169 170 – 174
Frekuensi 2 4 10 14 11 6 3
3. Hitunglah rataan hitung pada masing-masing masing-mas ing data berikut ini. a. 11, 13, 16, 19, 15, 10 b. 8, 3, 5, 12, 10 Jawab: a. b.
̅ ̅
4. Rata-rata nilai matematika dari 19 siswa adalah 6,5. Kemudian ditambahkan nilai seorang siswa sehingga rata-rata menjadi 6,6. Berapa nilai matematika siswa yang ditambahkan. Jawab: f1 = 19; m1 = 6,5 f2 = 1; m2 = ? = 6,6 maka:
̅
̅
(6,6)(20) = 123,5 + m2m2
132 – 123,5 = 8,5
Jadi, nilai matematika siswa yang ditambahkan adalah 8,5 5.
Perhatikan tabel berikut ini. Tinggi (cm) 140 – 144 145 – 149 150 – 154 155 – 159 160 – 164 165 – 169 170 – 174 Tentukan: a. Rataan b. Rataan sementara c. Rataan step-deviasi
Frekuensi 2 4 10 14 12 5 3
Jawab:
Tinggi (cm) 140 – 144 145 – 149 150 – 154 155 – 159 160 – 164 165 – 169 170 – 174
Nilai tengah 142 147 152 157 162 167 172
Frekuensi 2 4 10 14 12 5 3 = 50
∑
284 588 1.520 2.198 1.944 835 516 = 7.885
∑
Deviasi -15 -10 -5 0 5 10 15
fd
∑
a. Rataan
∑∑ ∑ ∑ (∑∑ )
b. Rataan sementara
c. Rataan step-deviasi
6. Hitunglah modus dari tabel distribusi distribusi frekuensi frekuensi berikut berikut ini. Nilai 1 – 20 21 – 40 41 – 60 61 – 80 81 – 100
Banyak siswa 66 130 33 15 4
Jawab: Tb = 20,5 p = 20 d1 = 130 – 66 = 64 d2 = 130 – 33 = 97
Jadi, modusnya adalah 28,4503 7. Diberikan data dalam tabel frekuensi frekuens i di bawah ini. Hitunglah: a. Kuartil bawah
-30 -40 -50 0 60 50 45 = 35
u
fu
-3 -2 -1 0 1 2 3
-6 -4 -10 0 12 10 9 = 7
∑
b. Kuartil tengah c. Kuartil atas
Kelas 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 – 89
Frekuensi 3 7 8 12 9 6 3
Jawab : Kelas 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 – 89
Frekuensi 3 7 8 12 9 6 3 = 50
∑
fk 3 10 18 30 39 45 50
a) Kuartil bawah atau kuartil ke-1 (Q1) Untuk menentukan Q1 maka kita cari dulu kelas yang memuat Q 1, yaitu dengan
Berarti, kelas yang memuat Q , adalah 40 – 49, (fk = 18) =10; = 8; p = 10 maka diperoleh = 39,5;
menghitung nilai dari
1
Sehingga kuartil bawahnya :
= 39,5 +
= 42,628
Jadi, kuartil bawahnya adalah 42,628 b) Kuartil tengah atau kuartil ke-2 (Q2) Untuk menentukan Q2 maka kita cari dulu kelas yang memuat Q 2, yaitu dengan
Berarti, kelas yang memuat Q , adalah 50 – 59, (fk = 30) =18; = 12; p = 10 maka diperoleh = 49,5;
menghitung nilai dari
1
Sehingga kuartil bawahnya :
= 49,5 + 5,8 = 55,3 Jadi, kuartil tengahnya adalah 55,3 c) Kuartil atas atau kuartil ke-3 (Q3) Untuk menentukan Q3 maka kita cari dulu kelas yang memuat Q 3, yaitu dengan
Berarti, kelas yang memuat Q , adalah 60 – 69, (fk = 39) maka diperoleh = 59,5; = 30; = 9; p = 10
menghitung nilai dari
3
Sehingga kuartil bawahnya :
= 59,5 + 8,3 = 67,8 Jadi, kuartil atasnya adalah 67,8 8. Nilai ulangan matematika dari lima belas orang siswa adalah sebagai berikut: 9, 7, 6, 8, 9, 7, 4, 6, 5, 6, 8, 7, 7, 8, 5. Tentukan: a. Satistik lima serangkai b. Rataan kuartil (RK) c. Rataan tiga (RT) Jawab: Statistik peringkat : 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9. Statistik minimum = 4 dan statistik maksimum = 9.
a. Jadi statistik 5 serangkai :
Q2 =7 Q1 = 6 Q3 = 8 xmin = 4 xmax = 9 b. Rataan kuartil (RK) = ½ (6 + 8) = 7 c. Rataan tiga (RT) = ¼ (6 + 2 . 7 + 8) = 7 9. Hitunglah nilai D2 dan D4 dari kelompok data berikut ini a. 3, 1, 2, 8, 6, 6, 2, 3, 7, 10, 1 b. 10, 11, 18, 18, 19, 11, 11, 17, 15, 15, 14, 10, 10, 11, 18, 18, 19, 14, 14, 18 Jawab: a. Data terurut: terurut: 1, 1, 2, 2, 3, 3, 3, 6, 6, 7, 8, 8, 10
Letak D2 = data ke= data ke-2 x (1,2) = data ke-2,4
1,4 (2 – 1) = Letak D = data ke D2 = 1 +
4
= data ke-4 x (1,2) = data ke-4,8 D4 = 1 +
(3 – 2) = 2,8
b. Data terurut: 10, 10, 10, 11, 11, 11, 11, 14, 14, 14, 15, 17, 18, 18, 18, 18, 19, 19, 19 Letak D2 = data ke= data ke-2 x (1,5) = data ke-3 D2 = 11 Letak D4 = data ke= data ke-4 x (1,5) = data ke-6 D4 = 14
10. Sekelompok data diberikan dalam tabel distribusi frekuensi berikut ini. Hitunglah desil keenam. Nilai 31 – 40 41 – 50 51 – 60 61 – 70 71 – 80 81 – 90 91 – 100
Frekuensi 3 5 5 7 8 9 3
Jawab: Nilai 31 – 40 41 – 50 51 – 60 61 – 70 71 – 80 81 – 90 91 – 100
Desil ke-6 (D6)
Frekuensi 3 5 5 7 8 9 3 = 40
∑
fk 3 8 13 20 28 37 40
Kita cari dulu kelas yang memuat D6, yaitu dengan menghitung nilai dari
Berarti, kelas yang memuat D6 terletak pada kelas 71 – 80 maka diperoleh
70,5;
=20;
= 8; p = 10
Sehingga desil ke-6 adalah
= 70,5 + 5 = 75,5 Jadi, desil ke-6 adalah 75,5.
11. Tentukan simpangan simpangan rata-rata untuk data 3, 2, 1, 2, 2, 1, 4, 5. Jawab: Rataan hitung:
̅
||||||||||||||||
12. Hitunglah nilai rataan simpangan dari tabel berikut xi 61 64 67 70 73
Jawab: Rataan hitung:
∑
fi 5 18 42 27 8 = 100
̅ | | | |
xi 61 64 67 70 73
6,45 3,45 0,45 2,55 5,55
∑
fi 5 18 42 27 8 = 100
f
32,25 62,10 18,90 68,85 44,40 = 226,50
∑ | | |
| | ∑ ∑ Jadi, simpangan rata-ratanya adalah 2,265. 13. Tentukan ragam dari data 4, 5, 6, 7, 8, 6. Rataan hitung: Ragam
̅
=
14. Hitunglah simpangan baku dari tabel berikut. xi 51 54 57 60 63
Jawab: Rataan hitung: xi 51 54 57 60 63
∑
fi 5 42 18 27 8 = 100
̅ 32,83 7,45 0,07 10,69 39,31
∑
fi 5 42 18 27 8 = 100
fi
164,15 312,90 1,26 288,63 314,48 = 1.081,42
∑
Sampel yang berukuran besar (n > 30)
∑ √ Jadi, standar deviasi adalah 3,288.
15. Tentukan nilai jangkauan, jangkauan antar kuartil, dan simpangan kuartil dari data dibawah ini.
27
28
31
31
36
37
37
39
39
40
41
41
43
44
46
46
51
68
Jawab:
Jangkauan: Xmax - Xmin 68 – 27 = 41 Q2 = 39,5 Q1 = 36 Q3 = 44 Jangkauan antar kuartil: Q3 – Q1 44 – 36 = 8 Simpangan kuartil: ½ (44 – 36) = 4