Chapter 1 1.1
From Eq. (1.1)
=
V LSB 1.2
=
28
= 136.7 mV
V FS 2
5
=
n
216
= 76 mV
From Eq. (1.1)
=
V LSB 1.4
2
3.5
=
n
From Eq. (1.1)
V LSB 1.3
V FS
V FS
3.5
=
2n
= 53.4 µ V
216
From Eq. (1.2)
= (1x 2−1 + 0 x2−2 + 1x2 −3 ) x 5 = (0.5 + 0.125) x 5 = 0.625 x 5 V vo = 3.125V vo
1.5
From Eq. (1.2)
= (1 x 2−1 + 1 x 2−2 + 0 x 2−3 + 1 x 2−4 ) x 5V vo = (0.5 + 0.25 + 0.125) x 5V = 4.375 V
vo
1.6
200π t = 6.5 + 5 x 10−3 Sin 20 V DC = 6.5 V v AB
I DC =
=
R L
=
v AB
vab
1K Ω
= 6.5 mA
R L
=
5 x 10−3 Sin 20 200 π t 1 K Ω
200 π t = 5 x 10−3 Sin 20
= 6.5 + 5 x 10−3 Sin 20 200π t V
Vab = 6.5 I a
6.5
= 5 x 10−3 Sin 20 200 π t V
vab ia
V DC
=
6 .5
2
2
+(
+(
5 x 10−3 2
5 x 10−3 2
)2
≃
mA
6.5 V
)2 mA
≃
6.5 mA
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.7
Given
v DC = 7.5 + 10 x 10−3 Sin 20 2000π t V
V DC = 7.5 V I DC =
R L
7.5
=
1 K Ω
= 7.5 mA
= 10 x 10−3 Sin 20 2000 π t
vab ia
V DC
=
10 x 10−3 Sin 20 2000π t 1 K
= 10 x 10−3 Sin 20 2000 π t mA
−3
Vab
7.5V
≃
i A
= 7.5 mA + 10 x 10−3 Sin 2000π t
I a
10 x 10−3 2 (7.5) + ( ) mA 2
I a 1.8
=
10 x 10 2 (7.5) + ( ) 2 2
= ≃
mA
2
7.5 mA
v s
= 1.5 + 12 x 10−3 Sin ω t V
vo
= 7.5 + 2.5 Si Sin ω t V
From Eq. (1.9)
AV =
7.5 1.5
=5
From Eq. (1.10)
Av
=
2.5 12 x 10−3
= 208.3
1.9
= 2.5 + 20 x 10−3 Sin ω t vo = 7.5 + 4.5 x 10−3 Sin ω t v s
From Eq. (1.9)
AV =
7.5 2.5
=3
From Eq. (1.10)
Av
=
4.5 20 x 10−3
= 225
1.10 (a)
From Eq. (1.12) Power gain A P =
P L P i
vo 2
=
v s 2
RL Ri
=
1 100 K Ω (40 x 10−3 )2 50 K Ω
= 312.5
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
(b)
= Ri = 50 K Ω
For R L
A P =
P L
=
Pi
vo 2
=
vs 2
1
= 625
(40 x 10−3 )2
From Eq. (1.11)
vo
io
A I =
=
i s
R L
v s
1
=
40 mV
Ri
= 25
1.11 (a)
From Eq. (1.12)
vo 2 A P =
v s
R L
=
2
Ri
1.22
147 K Ω (80 x 10 )2 100 K Ω −3
= 153
(b)
R L
= Ri = 100 K Ω vo
Ai
=
R L
v s
Ri
=
1.2 80 x 10−3
= 15
1.12 (a)
Av =
io =
Ai =
vo(peak) vi(peak) vo RL
=
io(peak) iL(peak)
=
6.5 –3
50 × 10
= 1.30 × 103 = 130 130 or 42.28 dB
6.5 sin1000 sin1000 π t 5000 =
1.3 × 10 –3 –6
1 × 10
= 1.3 sin (1000π t ) mA
= 1300 or 62.28 dB
A p = Av ⋅ Ai = 130 × 1300 = 169 × 103 or 52.28 dB (10 log P log P o/ P P i) Ri = (b)
vi(peak) ii(peak)
=
50 × 10 –3 –6
1 × 10
P dc + V EE dc = V CC CC I CC CC + V EE I EE EE
= 50 k Ω
= 15 (15 + 15) mW = 450 mW
P L =
vo (p (peak ) io (p (peak ) 2
⋅
2
=
6.5 × 1.3 × 10 –3 2
= 4.225 mW P i =
vi (p (peak ) ii (p (peak ) 2
⋅
2
=
50 × 10 –3
× 1 × 10 –6 2
= 25 nW
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
= η = (c)
P L
+ P i
Pdc
4.225 × 10 –3
=
450 × 10 –3
+ 25 × 10−9
≃
0.938%
Av vi(max) = V o(max) o(max) = V CC CC vi(max) =
15
= 115.4 mV
130
1.13
V o = 5.3 V at at V I = 21 mV, V o = 5.8 V at V I = 27 mV
∆V o = (a)
Av =
(b)
Adc =
(c)
Vo – V (min) Av – 5.5 + 2 83.3
5.8 – 5.3 = 0.5 V,
∆V o ∆V I V o
=
–3
6 × 10 5.5
=
V I
0.5
V F – 24 mV ≤
≤
V I – 24 mV ≤
= 83.3 83.3 or 38.4 dB
= 229 or 47.2 dB
24 × 10 –3
≤
∆V I I = 27 – 21 = 6 mV
Vo(max) – V o Av 11 – 5.5 83.3
– 42 mV ≤ V I – 24 mV ≤ 66 mV – 18 mV ≤ V I ≤ 90 mV 1.14 (a)
io = ii =
Ai = Av =
vo RL vi Ri io ii vo vi
= =
= =
2V 10 k Ω
= 0.2 mA
1 mV 100 k Ω
= 10 nA
0.2 × 10 –3 –9
10 × 10 2
–3
1 × 10
= 2 × 104 or 86 dB
= 2 × 103
A p = Av Ai = 2 × 103 × 2 × 104 = 4 × 107 or 152 dB (b)
vi = ii Ri = 1 × 10 –3 × 100 = 10 –1 V vo = io RL = 100 × 10 –3 × 103 = 100 V Av =
Ai =
vo vi io ii
=
=
100 0.1
= 1000 or 60 dB
100 × 10 –3 10 –3
= 100 or 40 dB
A p = Av Ai = 1000 × 100 = 10 5 or 50 dB
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.15 (a) From Eq. (1.23)
Av =
=
Avo
(1 + Rs Ri ) (1 + Ro RL ) 150 1800) (1 + 50 4700) (1 + 200 18
= 133.6
From Eq. (1.24) Ai =
Avo Ri
+ Ro
RL
150 × 1800
=
4700 + 50
= 56.84
From Eq. (1.25) A p = Av Ai = 133.6 × 56.84 = 7593.82 (b) Problem 1.15 Amplifier VS
1
0
AC
100MV
RS
1
2
200
RI
2
0
1.8K
E1
3
0
2
R0
3
4
50
RL
4
0
4.7K
. TF
V(4)
0
150
VS
. End
1.16
For maximum power transfer Ro = RL = 50 Ω P L = vo io = ( A Av vi) ( A Ai ii) =
=
=
=
=
∴
P L(max) L(max) =
Avo ⋅ vi
⋅
Avo Ri
(1 + RS Ri ) (1 + Ro RL ) RL + Ro Av2o Ri RL vi
+ Rs )( RL + Ro )
( Ri
⋅
Av2o Ri RL ( RL
+ Ro )
2
( Ri
( RL + Ro ) vi2 2
Av2o Ri RL ( RL
Avo ⋅ vi
⋅
+ Rs )
⋅
+ Ro )2 ( Ri + Rs )
ii
Ri vs
2
( Ri + Ro ) 2
Av2o RL Ri3 vS2 ( RL
+ Ro )2 ( Ri + Rs )3
1502
× 50 × 18003 (100 × 10 –3 ) 2 100 2 (1800 + 200)3
= 820 mW
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.17
∆ vo
=
vo
∆ vo
R o
+ Ro
RL
= 0.15 =
vo
Ro =
R o 1.5 k + R o
1.5 × 103
× 0.15
0.85
= 264.7 Ω
1.18
vo = Avo vi
(a)
=
RL RL
+ Ro
RL
= A = Avo
RL
+ Ro
⋅
R i ⋅ V s Ri
+ Rs
200 × 22 × 105
× 50 × 10 –3 = 5.16 V ( 22 + 20) (105 + 1500)
(b) From Problem 1.16
P L =
=
Av2o
RL Ri 3 V s 2
+ R o )2 ( R i + R S )3
( RL
× 22 × 1015 × (50 × 10 –3 ) 2 (22 + 20) 2 ⋅ (105 + 1500) 3
2002
= 1.19 W (c) Av =
(d) Ai =
vo vs io is
=
5.16 50 × 10 –3
= 103.2
5.16
, io =
= 122.86 mA
22 + 20 is =
Ai =
vs R s
+ Ri
=
50 × 10 –3 5
1500 + 10
122.86 × 10 –3 –7
4.93 × 10
= 4.93 × 10 –7 A
= 249 × 103
(e) A p = A = Av Ai = 103.2 × 249 × 103
= 25.7 × 106 1.19
is ≤ 1 µA =
vs Rs
+ Ri
10 ×10 –3
=
2.5k + Ri
Ri > 7500 Ω From Eq. (1.27)
∆ vo vo
=
R o RL
+ Ro
, RL ranging from 2 k Ω to 10 k Ω
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
For
∆ vo vo
≤ 0.5% 5 1000
=
Av =
R o RL
+ Ro
5V 10 mV
, Ro ≤ 10 Ω
= 500 or 53.98 dB
From Eq. (1.23) 500 =
∴
A vo
(1 + Rs
R i ) (1 + Ro RL )
=
A vo
(1 + 2.5 k 7.5 k) (1 + 10 2000)
Avo = 669.8
1.20
From Eq. (1.23) Av =
Avo
(1 + Rs Ri ) (1 + R o RL )
Variation in A in Av will be contributed by Avo, RS, and R and RL. Assume equal contribution by each. Hence the value of R of R o that will keep the variation in gain within 0.5% for variation in R L from 5 k Ω to 20 k Ω can be found from 5 k 5k + Ro
=
Ro =
20 k 20 k + Ro
× 0.995
20k (1 – 0.9 0.995) 95) 4 × 0.995 – 1
> 33.5 Ω
1.21 (a) By Kirchoff’s Kirchoff’s current current law at node A R s
R
A i s
i f
+
V i i i
R o
R i
–
Avo V i
R x
is = ii + if = =
= vi
Rx =
vi is
vi Ri
+
vi – Avo vi R + Ro
1 1 – Avo R + R + R i o =
1 1 Ri
+ (1 − Avo )
( R + Ro )
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
(b) For R For Ri = 50 k, Ro = 75 Ω, Avo = 2, R = R = 10 k
Rx =
1
+ (1 − 2) = – 12.62 k Ω
is =
1 50 50 k V s
Rs
+ Rx
∴
20 mV 1.5 k Ω – 12 12.62 k Ω
= – 1.8 µA
vs
(c) For is = 2.5 µA, Rs + R + Rx =
=
=
(10 k + 75 7 5)
is
20 mV – 2.5 µA
= – 8 k Ω
Rx = – 8 k – 1.5 k = – 9.5 k Ω
1.22
Ais = 200, Ri = 150 Ω, Ro = 2.5 k Ω RL = 100 Ω, is = 4 mA, Rs = 47 k Ω (a) From Eq. (1.30)
Ai =
Ais
(1 + Ri Rs ) (1 + RL Ro )
=
200
(1 + 150 47 k ) (1 + 100 2500)
= 191.7 Av = Ai
RL Rs
= 191.7 ×
100 47 k
= 0.4078
A p = Av Ai = 191.7 × 0.407 = 78.17 (b) Problem 1.22a Amplifier VS
1
0
AC
RS
1
2
47K
RI
3
0
150
F1
0
4
VX
VX
2
3
0V
VY
4
5
DC
R0
4
0
2.5K
RL
4
0
100
.
TF
V(s)
1MV
200
0V
VS
END
.
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
Problem 1.22b Amplifier IS
0
1
AC
RS
1
0
47K
RI
2
0
150
F1
0
3
VX
200
VX
1
2
DC
0V
VY
3
5
DC
0V
R0
3
0
2.5K
RL
5
0
100
.
TF
I(VY)
1MA
IS
END
.
1.23
From Eqs. (1.28) and (1.29) io =
=
A is R o R o
Rs
⋅
+ RL
Rs
+ Ri
10 × 22 × 103 22 × 10
3
+ 150
×
⋅ is
100 × 103 10
5
× 50 × 10 –3
+ 50
= 4.96 A 1.24 i i
+ R s
i s
V i
AI isi
R i
R o
–
(a) Output resistance =
=
open-cir open-circuit cuit voltage voltage short-circuit short-circuit current 12 100 × 10 –3
= 120 Ω
Ais ii = short circuit current = 100 × 10 –3 A ii = is
Ais =
Av =
Rs Ri
+ Rs
=
100 × 10 –3 –6
5 × 10 vo vs
= A = Ais iL
5 × 10 –6
× 100 k
50 + 100 k
≃
5 × 10 –6 A
= 20 × 103 Ro Ro
+ RL
⋅
RL is Rs
� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
= 100 × 10 –3 ×
120 120 + 2700
×
2700 5 × 10 –6
× 105
= 22.98 (b) Ai =
20 × 103 100 k) (1 + 2.7 k 12 1 20) (1 + 50 10
= 850.6
(c) A p = A = Av Ai = 22.98 × 850.6
= 19,547 1.25
Following Example 1.4 we have 0.99
Ro Ro
+ 20
=
Ro Ro
+ 500
Ro (1 – 0.99) 0.99) = 500 × 0.99 – 20 Ro = 47.5 k Ω For R For Ri 0.99 ×
100 k 100 k × Ri
=
10 k 1 0 k + R + Ri
Ri = 111.23 Ω Ais =
20 × 10 –3 100 × 10 –6
= 200 A/A
1.26
Assume A Assume Ai varies equally due to contribution from Ais Rs, and R and Ro. Ro
+ RL
Ro
= 0.995, Ro =
Ro Ro
+ 100
100 × 0.995 1 – 0.9 0.995
= 0.995 > 19.9 k Ω
Similarly Rs Rs
+ Ri
= 0.995,
100 k 100 k + Ri
= 0.995
Ri ≤ 503 Ω Ai = 50 =
∴
Ais
≃
Ais
(1 + Ri Rs ) ( RL Ro ) Ais 100 k ) (1 + 100 19 1 9.9 k ) (1 + 503 10
≃
Ais
50
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.27 i i
+ R i i s
–
v i
R s
Ai Li
v e
+
R o
+
–
+
R L
v f
R
v o
–
– R x =
v i Li
(a) R allows R allows a voltage that is proportional to lead current io to be fed back to the input side.
Converting current source to voltage source R o
i i
i s
R s
+ Ais i i R o –
R i
+ v i –
I
R x =
R L
+ v o –
R
v i i i
Applying KVL to loop II Ais Ro ii = Ro io = R = R((ii – io) + R + RL io = ( R Ro + R + RL + R + R)) io – Ri – Rii io =
+R + RL + R
Ais Ro Ro
ii
(1)
Applying KVL to loop I vi = R = Ri ii + R + R((ii – io) = ( R Ri + R + R)) ii – Ri – Rio
(2)
Substituting i Substituting io from Eq. (1) into Eq. (2) and simplifying vi = ( Ri + R + R)) ii – R ⋅ vi ii
= R = Ri + R + R – – R R
Rx =
vi ii
+R ii + RL + R
Ais Ro Ro
+R + RL + R
Ais Ro Ro
= Ri + R – R
( Ais + R / Ro ) 1 + ( RL + R) Ro
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
(b) Assume ideal current amplifier with R with Ri = 0 and R and Ro = ∞, we have the reduced figure as i o
i s
+ Ais i L –
R s
R L
+ v o –
R
R x =
v i Li
Rx = R = R – – RA RAis = R = R(1 (1 – A – Ais) For A For Ais > 1, R 1, Rx is negative, and if Ais = 2 Rx = – R – R For R For Rx = – 10 k Ω we need R need R = = 10 k Ω. Thus an ideal current amplifier with Ais = 2 and R and R = = 10 k Ω will simulate a negative resistance. 1.28
Problem 1.27 for A for Ais = 2 and substituting R substituting R by by impedances Z impedances Z ( s) s) (a) Using the result of Problem Z x =
Vi (s) Ii (s)
= – Z Z ( s) s) = – R +
− R ( R + 1 sC ) − R + R + 1 sC
= – [ R – R – sCR sCR2 – R] R] = sCR = sCR2 Z x = sL = sL e where the effective inductance L e is given by CR 2 . Thus, the circuit simulates an inductance. (b) To simulate L simulate Le = 10 mH, let C let C = 0.01 µF,
10 × 100 –3 = 0.01 × 10 –6 × R2 R2 = 106, R = R = 1 k Ω (c) Problem 1.28 Inductance Simulation Simulation IS
0
4
AC
1MA
V1
4
1
DC
0V
F1
1
0
V1
2
R1
1
2
1K
R2
2
3
1K
C1
3
0
0.01UF
V2
2
5
DC
R3
5
0
1K
F2
5
0
V2
2
. AC LIN
10
1K
10K
. PRINT
AC
VM(1)VP(1)
0V
. END
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.29
vo = – Gm1 vi( s) s)
(a)
⋅
1 sC
ii( s) s) = – Gm2 vo( s) s) = Gm1 Gm2 vi ( s)
Z i =
ii (s )
=
vi ( s) sC
SC Gm1Gm2
Z i( j jω ) = j = jω
C Gm1Gm2
(b) Problem 1.29 Amplifier VS
1
0
AC
1V
RS
1
2
100
G1
0
2
3 0
3M
G2
3
0
2 0
3M
C1
3
0
0.1UF
R1
3
0
100M
. TRAN15US1.5 MS . PROBE . END
1.30
Assuming that the discharging time constant τ = = CR i is related to the input frequency by = τ =
10 f , CRi =
10 60 × 103
(a) Let C = = 0.1 µF, then R then Ri =
10 –6
0.1 × 10
× 60 × 103
= 1.67 k Ω (b) Variation in Gm, according to Eq. (1.36), will be contributed by G ms and R and RL. Assume equal
contributions, R contributions, Rs = 0. The gain parameter Gms =
io vs
=
20 cm 170 V
×
5 mA 1 cm
= 0.588 mA/V ± 1% The value of R of Ro that will keep gain variation within 1% for variation in RL from 20 Ω to 500
Ω can be found from 0.99
Ro Ro
+ 20
=
Ro Ro
+ 500
Ro > 47.5 k Ω
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.31 R s
Assume 1% for for R i and 1% for R o
Ri Ri
+ Rs
i o
+
+ v i
–
–
V s
R i
Gm v i
R o
R L
> .99, Ri (1 – 0.99) > 0.99 R 0.99 Rs
For R For Rs = 1 k Ω, Ri >
0.99 × 1 k = 99 k Ω 0.01
Similarly Ro Ro
> 0.99,
+ RL
Ro >
0.99 × 200 0.01
Ro > 19.8 k Ω 1.32
For R For Rm = 20 Ω to 100 Ω 0.99 Ro
+ 20
=
1 Ro
+ 100
Ro = 7.9 k Ω Ω o
Gm V i
R o
R m
For R For Rs varying from 2 k Ω to 5 k Ω 0.99 Ri
+ 2k
=
1 Ri
+ 5k
, Ri (1 – 0.99) = 5 k × 0.99 – 2 k
Ri = 295 k Ω For
vs = 10 V, I o = 100 mA Gm =
I o vs
=
100 100 mA 10 V
= 10 mA/V
Transconductance amplifier
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.33
Using Eq. (1.41) Z mo
Z m =
(1 + Ro RL ) (1 + Ri Rs )
=
0.5 k 1 0 k ) (1 + 4.7 k 4.7 k ) (1 + 1.5 k 10
= 217.39 V/A From Eq. (1.42) Z mo RL
Av =
( Rs + Ri ) ( RL + Ro )
0.5 × 103
× 4.7 × 103 (10 × 103 + 1.5 × 10 3 ) ( 4.7 × 103 + 4.7 × 103 )
=
= 21.739 × 10 –3 ii =
Rs
⋅ is =
+ Ri
Rs
× 50 × 10−3 10 4 + 1.5 × 103
10 4
=
500 11.5 × 103
mA
From Eq. (1.39) vo = Z mo mo
ii RL
+ R0
RL
= 0.5 k ×
500 11.5 × 103
×
4.7 × 10 1 03
( 4.7 × 103 + 4.7 × 103 )
= 10.87 V 10.87
io =
3
4.7 × 10 io
Ai =
=
is
= 2.31 × 10 –3 A
2.3 × 10 –3 50 × 10 –3
= 0.046
1.34
Since the output variation should be kept within ±2%, variation of effective transimpedance Z m should be kept to ±2%. According to Eq. (1.41) the variation in Z in Z m will be contributed by Z mo and Ro. Assume equal contribution to the variation. mo and R Let R Let Ri = 10 Ω. Then Z mo mo =
10 V 2 cm cm
×
20 cm 100 mA mA
= 1000 V/A ± 1%
The value of R of Ro that will keep gain variations within 1% for variation of RL from 2 k Ω to 10 k Ω is 0.99 × 10 k 2 k = 10 k + Ro 2 k + Ro Ro ≅ 25 Ω Design specifications are Z are Z mo and Ri ≤ 10 Ω. mo = 1000 V/A, Ro ≤ 25 Ω, and R 1.35
Let R Let Ri = 10 k << k << R Rs ii =
Rs Rs
Rs Ri
+ Rs
+ Ri
� is =
105 10
5
× 0 .5 = 454.5 mA + 10 4
= 0.99, Ri × 0.99 + 0.99 Rs = Rs
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
Rs (1 − 0.99)
Ri =
0.99
=
× 0.01
100 k
0.99
= 101 k Ω Rm
+ Ro
Rm
= 0.99, Ro = =
Z mo mo =
V o ii
Rm (1 − 0.99) 0.99 20 k
0.99
5
=
× 0.01
454 �5 � 5 × 10 −3
= 202
= 11 V A ± 1%
1.36 R s
R s
+ v s –
+ Avov i
R i –
R L
+ v o –
Voltage amplifier
For ideal voltage amplifier Ro = 0 and R and Ri = ∞ vo = Avo vi
(1)
For ideal current amplifier Ro =
∞, Ri = 0
io = Ais is
(2)
∴
vo = Avo vi = io Ro = A = Ais is Ro = Ais ii Ro
Using
vi = ii Ri Avo ii Ri = Ais ii Ro Avo = Ais
Ro Ri
(3)
For ideal transconductance amplifier amplifier io = Gms vs for R for Ro = ∞, Ri = ∞ vo = Avo vi = io Ro = Gms vi Ro
∴ Avo =
Gms Ro
(4)
For ideal transimpedance amplifier amplifier Ri = 0, Ro = 0 vo = Z mo mo is = Z mo ⋅ ii vo = Avo vi = Z mo mo
∴
Avo =
Z mo Ri
vo Ri
(5)
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
Using
Ro
Avo = Ais
Ri
Ais = Avo
Ri Ro
= 250 ×
Avo = Gms Ro, Gms =
50 × 10
3
= 12,500 A/A
1 × 103
Avo Ro
=
250 1000
= 0.25 A/V 3 Z mo mo = Avo ⋅ Ri = 250 × 50 × 10
= 12.5 MΩ Equivalent amplifiers are:
i s
R s
Ais i i
R i
R o
R L
Equivalent current amplifier R s
i o
+
+
v i
v s
+ Gms v i
R o
R L
–
–
–
Equivalent transconductance amplifier
R o
+ i s
R s
R i
+
v i
R L
Zmo i i
–
v o
–
Equivalent transimpedance amplifier
1.37 R s
+ v s –
+ v i –
i o R i
Gms v i
R o
+
v o –
R L
Transconductance Transconduc tance amplifier
Gms = 20 mA/V
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
Avo = Gms Ro = 20 × 10 –3 × 2 × 103 = 40 V/V Avo = Ais
Ro Ri
or A or Ais = Avo �
Ri
=
Ro
40 × 100 × 103 2 × 103
= 40 × 50 = 2000 A/A Z mo � Ri = 40 × 100 × 103 mo = Avo � R = 4 MΩ Equivalent circuits R s
R o
+ v i –
+ R 1
v s –
+ Gvo v i –
R L
Voltage amplifier
i i R s
i s
i o + v i –
R i
R o
Ais i i
+ R L
v o
–
Current amplifier v o
i i
R s
i s
+
+
R i
–
Zmi i i
R L
–
Transimpedance amplifier
1.38 (a) From Eq. (1.21)
Av1 = Av2 = A = Avo
Ri2 Ri 2
+ Ro1
=
50 × 2.5 × 103 2.5 × 103
+ 100
= 48 From Eq. (1.45), the overall open-circuit open-circuit voltage gain Avo =
V o V i
= A = Av1 ⋅ Av2 ⋅ Av3
= 48 × 48 × 50 = 115,200 or 101.22 dB
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
Total effective voltage gain using Eq. (1.23) Av =
=
V o
Avo Ri RL
=
V s
( Ri / Rs ) ( RL / Ro )
115200 × 2.5 × 103
× 2.5 × 103 ( 2.5 × 103 + 200 × 103 ) ( 2.5 × 103 + 100 )
= 1367.5 or 62 dB Overall current gain Ai =
io ii
=
Avo ⋅ Ri1 RL
+ Ro3
=
115200 × 2500 2500 + 100
= 110,769 or 100.9 100.9 dB A p =
P L P i
= A = Av ⋅ Ai = 1367.5 × 110769
= 1.5 × 108 or 81.7 dB (b) Problem 1.38 Cascaded Amplifier VS
1
0
AC 100 MV
RS
1
2
200K
RI1
2
0
2.5K
E1
3
0
4
R01
3
4
100
RI2
4
0
2.5K
E2
5
0
40
R02
5
6
100
RI3
6
0
2.5K
E3
7
0
60
R03
7
8
100
RL
8
0
2.5K
. TF
V(8)
50
50
50
VS
. END
1.39 (a) Using Eq. (1.21), A (1.21), Av of stage 1 and 2 is given by
Av1 = Av2 =
Avo1 Ri 2 Ri 2
+ Ro1
=
80 × 2500 2500 + 100
= 76.9 From Eq. (1.45), the overall open-circuit open-circuit voltage gain Avo = Av1 ⋅ Av2 ⋅ Avo3 = 76.92 × 80 = 473,088 or 113.5 dB From Eq. (1.23) Av =
Avo ⋅ Ri RL
( Ri + Rs ) ( RL + Ro )
=
473, 08 088 × 2500 × 1500
( 2500 + 200 × 103 ) (1.5 × 103 + 300 )
= 4867 or 73.7 dB
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
Ai =
Avo RLi
+ Ro3
RL
=
473, 08 088 × 2500 1.5 × 103
+ 300
= 657,066.7 or 116.6 dB
A p = Av Ai = 4867 × 657,066.7 = 3.19 × 109 or 95 dB (b) Problem 1.39 Cascaded Amplifier VS
1
0
AC100MV
RS
1
2
200K
RI1
2
0
2.5K
E1
3
0
2
R01
3
4
100
RI2
4
0
2.5K
E2
5
0
4
R02
5
6
100
RI3
6
0
2.5K
E3
7
0
6080
R03
7
8
300
RL
8
0
1.5K
. TF
V(8)
0
80
0
80
VS
. END
1.40 (a)
io =
=
=
Ai =
=
Ais3 ii3 Ro3 Ro3
+ RL
=
Ais3 Ro3 Ais2 ii 2 Ro 2 Ro3
+ RL
Ais3 Ais2 Ro3 Ro 2
⋅
Ro 2
+ Ri3
Ais1ii1Ro1
( Ro3 + RL ) ( Ro 2 + Ri3 ) ( Ro1 + Ri 2 ) Ais3 Ais2 Ais1 Ro3 Ro2 Ro1
( Ro3 + RL ) ( Ro 2 + Ri3 ) ( Ro1 + Ri2 ) io Ls
=
⋅
Rs ii Rs
Ais3 Ais2 Ais1 Ro3 Ro2 o 2 Ro1
+ Ri1 ⋅
Rs
( Ro3 + RL ) ( Ro 2 + Ri3 ) ( Ro1 + Ri2 ) ( Rs + Ri1) 1003 (4.7 × 103 )3
× 20 × 103 ( 4700 + 100) ( 4700 + 100) ( 4700 + 100) ( 20 × 103 + 100 )
= 934,122 or 119.4 dB Av =
Av =
=
V o V s
=
io Ri ii1 R ⋅ i1
on substitution for A for Av from above
Ais3 Ais2 Ais1 Ro3 Ro 2 Ro1 RL
( Ro3 + RL ) ( Ro 2 + Ri3 ) ( Ro1 + Ri2 ) Ri1 106
× 109 × 4.73 × 102 483 × 106 × 10 2
= 42,498.5 or 92.56 dB AP = Av Ai = 42,498.5 × 934,122 = 3.97 × 1010 or 105 dB
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
(b) Problem 1.40 Cascaded Cascaded Current Amplifier IS
1
0
AC 100MA
RS
1
0
20K
V1
1
2
DC 0V
RI1
2
0
100
F1
0
3
V1 100
R01
3
0
4.7K
V2
3
4
DC 0V
RI2
4
0
100
R02
5
0
4.7K
V3
5
6
DC 0V
RI3
6
0
100
F3
7
0
V3 100
R03
7
0
4.7K
VX
7
8
DC 0V
RL
8
0
100
. TF I(VX)IS . END
1.41
io =
(a)
Ai =
Av =
Gms Vi 2 Ro 2 Ro2 io ii
=
V o V i
+ RL
=
−
Gms Ro 2 Ro 2
+ RL
⋅
Z mo ii Ri 2 Ro1 + Ri 2
− 20 × 10 –3 × 105 10 4 + 106 × 5 3 6 10 + 10 200 + 10 + io
=
RL
ii Ri1
=–
198 × 103 50 × 103
= – 198
= – 3.96
A p = Ai Av = – 198 × – 3.96 = 784 (b) Problem 1.41 Transconductance Amplifier VS
1
0
AC 10MV
RS
1
2
5K
VX
2
3
DC 0V
RI1
3
0
50K
H1
4
0
VX 10K
R01
4
5
200
RI2
5
0
1MEG
G1
6
0
5
R02
6
0
100K
RL
6
0
1K
. TF
V(6)
0
20M
VS
. END
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.42
From Eq. (1.54d)
f L
1
=
1
=
2 π R1C1
2π x 147 K Ω x 0.1 nF
= 10.8 KHz
1.43
From Eq. (1.54d)
f L
1
=
2π R1C 1 1
R1 =
2π f LC1
1
=
2π x 4 x 103 x 0.01 x 10−6
= 3.979 K Ω
1.44
From Eq. (1.59d)
f H =
1 2 π x 147 x 103 x 0.1 x 10−9
= 10.8 KHz
1.45
From Eq. (1.59d)
f H = R2
=
1 2 π R2C 2 1
=
2 π f H C2
1 2 π x 25 x 103 x 0.01 x 10−6
= 636.6 K Ω
1.46
Av( j jω ) =
| Av( j jω ) | =
200 1 + jω / 100
100 =
100 + jω
2104 2
ω
(a)
=
2 × 104
+ 10 4
2 × 104 2
ω
H
+ 10 4
, ω H =
3 × 104
= 173.2 rad/s f H =
(b)
50 =
173.2 2π
2 × 104 2
ω
H
ω H =
f H =
= 27.56 Hz = BW
+ 10
4
, ω 2H × 104 = 16 × 104
387.29 rad/s 387.29 2π
= 61.64 Hz = BW
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.47 R s
+
+
v s –
(a)
+
v i
Gms v i
R i
R o
C
R L
–
–
vo = – Gms vi Ro ||
1 sC
|| RL
= – 20 × 10 –3 vi 980 980 || vi =
5 × 105 vs 3
505 × 10
sC 1
(i)
= 0.99 vs then
vo = – 20 × 10 –3 × (0.99 vs) × 980 980 || Av =
v o
sC 1
− 20 × 103 × 0.99 × 980 – 19.404 = − 1 + 980 jω C 1 + jω 980 × 0.1 × 10 6
Av(mid) = 19.404 ω H =
f H =
106 980 × 0.1 10204 2π
= 10,204
= 1624 Hz
f bw = Av(mid) × f H = 19.404 × 1624 = 31,512 (b)
RL = 10 k Ω, Ro || R || RL = 10 k || 50 k = 8333 Ω Av =
ω H =
165 − 20 × 10 –3 × 0.99 × 8333 = − 1 + jω 8333 × 0.1 × 10 –6 1 + jω × 833.3 × 10 –6 106 833.3
, f H = 190 Hz
f bw = 165 × 190 = 31,350 1.48
vo = – g m vi RL || = vi =
= − vi g m RL sC L 1 + sRL C 2 1
− vi g m C2 ( s + 1 RL C2 ) vs Ri Rs
+ Ri + 1 sC i
=
(1) vs Ri s ( Rs
+ Ri ) [ s + 1 Ci ( Rs + Ri ) ]
(2)
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
From (1) and (2) vo =
ω H
=
or f H = ω L
−
vs g m Ri s C2 ( Rs 1
RL C 2 107
=
f L =
2π
+ Ri ) ( s + 1 RL C2 ) [ s + 1 Ci ( Rs + Ri )] 1
=
10 × 10
3
× 10 × 10
− 12
= 107 rad/s
= 1.59 MHz 1
C1 ( Rs 100 3 × 2π
+ Ri )
=
1 2 0 × 10
−6
× 1500
=
100 3
rad/s
= 5.3 Hz
For A Av(mid) R s
+ V s –
R i
vo = – g m vi Ro = –
=
+ gm v i –
v i
gm Ri � Ro Rs
+ Ri
− 15 × 10−3 × 10 4 × 103 1500
R o
vs
= – 100
Problem 1.48 VS
1
0
AC
RS
1
2
500
C1
2
3
20UF
RI
3
0
1K
G1
4
0
3
RL
4
0
10K
C2
4
0
10PF
. AC
DEC
100
1
AC
VM(4)
.
PRINT
10MV
0
15M
10 MEG
. PROBE . END
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
1.49 R s
C 1
+
+ v i –
+ v s –
gm v i
R i
R o
R L
v o –
Low-frequency equivalent circuit vo = – g m vi ( R Ro|| R || RL) = – 15 × 10 –3 × 5 × 103 vi = – 7.5 vi vi =
=
Ri vs Rs
=
+ Ri + 1 sC 1
(i)
Ri sC1 vs 1 + ( Rs
+ R1 ) sC 1
× 10 × 10 −6 1 + s (25 × 103 + 1 × 103) 10 × 10 − 6 vs s 25 × 103
=
vs s 0.25 1 + 26 × 10−2 s
(ii)
From (i) and (ii) vo =
f L =
75 × 0.255
−
1 + 26 × 10 2 s 1 26 × 10−2
× 2π
(iii)
= 0.612 Hz
For high-frequency equivalent circuit R s
+
+
+
v s
R i
–
v i
gm v i
C i
R o
C o
vo = – g m vi Ro || RL || = – 15 × 10
vi = =
=
v o
sC o 1
5 × 103 vi
3
=
R L
–
–
1 + 5 × 103
× 10 × 10 − 12 s
− 75 vi 1 + 5 × 10 − 8 s || 1 sCi ) vs ( R1 ||1 Rs + Ri ||1 || 1 sC i Ri vs Ri
+ Rs + sRi Rs C i 25 × 103 vs
3
25 × 10
+ 103 + s × 25 × 103 × 103 × 20 × 10 − 12 ��
� ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi
=
Av(s) = = f H = Av(mid) =
25 vs
25 vs = 26 + s 500 × 10 −9 26 + s × 5 × 10 1 0− 7 25 − 75 × − 8 v s (1 + 5 × 10 s) 26 + 5 × 10 − 7 s − 75 × 25 −8 26 (1 + 5 × 10 s) (1 + 5 × 10 − 7 s 26 )
vo
=
1 2π × 5 × 10 10
− 75 × 25 26
−8
= 3.18 MHz
= – 72.1
Problem 1.49 VS
1
0
AC
RS
1
2
1K
C1
2
3
10UF
RI
3
0
25K
G1
4
0
3
RL
4
0
10K
R0
4
0
10K
C0
4
0
10PF
. AC
DEC 100
10MV
0
15M
1
10MEG
. PRINT AC VM(4) . PROBE . END
1.50
R m = 10 k × 400 R 1 Take R Take R1
+ 10 k ≃
1V I m
=
1V 100 100 µA
R 1
= 10 10 k Ω
= 1 V, R1 = 10 k (400 – 1) = 3990 k Ω
400 V
+ –
R m
+ 1V
4 MΩ ± 1%.
1.51
RL = 1.2 × 24 R 1
+ 1.2
6V 5A
R 1
= 1.2 Ω
= 6 V, R1 =
1.2 × 24 6
– 1.2 = 3.6 Ω
+ 24 V –
+ R L
Take R Take R1 = 3.6 Ω ± 5%.
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku. https://testbanku.eu/Solution-Manualeu/Solution-Manual-for-Microelectron for-Microelectronic-Circuits-3r ic-Circuits-3rd-Edition-by-Rashi d-Edition-by-Rashi
1.52
V 2 RL
=
RL = RL
× 120
R1 + RL 41.667 × 120 50
R 1
502
= 60 W
RL
+ 120 V –
502
+ 50 V
R L
= 41.667 Ω
60
= 50 V = R1 + 41.667, R1 = 58.334 Ω
Take R Take R 62 Ω ± 5%. ≃
1.53
I o = 1 mA i(t ) = V s R
=
V s R 24 R
R
e – t t/ τ V s
24 V
C
= 1 mA, R = R = 24 k Ω ± 5%
1.54
| Av | =
V O V I
=
400 5
= 80, Q = 60°
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku. https://testbanku.eu/Solution-Manualeu/Solution-Manual-for-Microelectron for-Microelectronic-Circuits-3r ic-Circuits-3rd-Edition-by-Rashi d-Edition-by-Rashi
�� � ���� ������� ���������� ��� ��� �� �������� ������ �� ����������� �� ������ �� � �������� ���������� �������� �������� �� ����� �� �� �����
Full file at https://testbanku.eu/Solution-Manua https://testbanku.eu/Solution-Manual-for-Microelect l-for-Microelectronic-Circuitsronic-Circuits-3rd-Edition-by-Ras 3rd-Edition-by-Rashi hi