MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
STRUCTURAL ANALYSIS
2
1
Operator
for Roof Top Installation
Project HUAWEI
SITE CODE:
YGN-0072
SITE OWNER:
…
SITE ADDRESS:
…
3
Technologies (YGN)
4
SA By Tarabit Wave SA Team ID TW-SA-01
SUMMARY Report
Engineer Mr.
29-July-2013
Location Map YGN
RESULTS AND RECOMMENDATIONS:
A
Good
The building is structurally adequate in its current condition.
Tripod status at Point of each Item
position
Pole
1
Pole Pole
Pole Yes/No
Description of each analysis ( Roof top) adequate status
9M
6m
The building is structurally adequate for proposed tripod tower
YES
YES
2
The building is structurally adequate for proposed tripod tower
YES
Yes
3
The building is structurally adequate for proposed tripod tower
NO
YES
Pole
4
The building is structurally adequate for proposed tripod tower
NO
YES
Equ.
on beam
BTS load on beam ( exception of Tripod support on beam)
Yes
YES
Analysis Reference Data: Description
1
XCDC - As-built Data
2
Site photos & Survey
As-built
Reference on
No
Survey Data
Yes
Attached
12.8
12
Floors=4 Height of BLD
10
Roof top
The analysis of the building (data) as per ACI- Steel Minimium
Roof top,
H(m)
Sir.
Tripole,
14
Source of data
8
See Site survey sketch
6
Additional Task work Status
Yes/No
The strengthening :
No
the structure modification:
No
Remark
4
2
0
Nan Dar B.E ( Civil) Structural Engineer STRUCTURAL ENGINEER
H(m)
0
5
10
0
15
BLd width (m)
10
Type of Tripod
8 6
9M
4
6M
2 0
1
2
3
4
Location
MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
STRUCTURAL ANALYSIS
1
2
for Roof Top Installation
Operator Project HUAWEI
SITE CODE:
YGN-0072
SITE OWNER:
…
SITE ADDRESS:
…
Technologies (YGN)
3
SA By Tarabit Wave
4
SA Team ID TW-SA-01 Engineer Mr.
29-July-2013
Location Map YGN
RESULTS AND RECOMMENDATIONS:
Tripod
position at:
1 Yes/No Yes
Sr. Description of each analysis ( Roof top) adequate status A The building is structurally adequate in its current condition. B The building is structurally adequate for proposed 9m tripod and equipment.
YES
C
YES
The building is structurally adequate for proposed 6m tripod and equipment.
Tripod position at: 2 B The building is structurally adequate for proposed 9m tripod and equipment.
YES
C
YES
The building is structurally adequate for proposed 6m tripod and equipment.
The structural framming system for Pole 2 is the same as the pole 1.
B9''X14" The roof top STR status in without poles: Structure is safe
3-16Фmm @T&B
Structure is safe for 9M and 6M is OK Analysis Reference Data: Sir.
Description
1-6.5Фmm @6"
Source of data As-built
Reference on
1
XCDC - As-built Data
No
Survey Data
2
Site photos & Survey
Yes
Attached
The analysis of the building (data) as per ACI- Steel Minimium
See Site survey sketch
Additional Task work Status
Yes/No
The strengthening :
No
the structure modification:
No
Nan Dar
Remark
C9''X9"
B9''X12"
B.E (Civil)
4-16Фmm @section
2-16Фmm @T&B
Structural Engineer
1-6.5Фmm @7.5"Tie
1-6.5Фmm @5"
MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
TABLE OF CONTENTS
1.
2.
3.
Page
CRITERIA / DESIGN SPECIFICATION3 1.1
Important Factor
2
1.2
Exposure Category / Wind Speed – up
2
1.3
Design Considerations
3
1.4
Material Strength
4
1.5
Codes and References
5 6
INVESTIGATION REPORT 2.1
Introduction
4
2.2
Tower Description
4
2.3
Roof Description
5
2.4
Conclusions and Recommendations
5 5
DESIGN COMPUTATIONS 3.1
Calculations of Wind Forces
3.2
Etab Analysis Result Summary
4.
6 8 Pages
ANNEX
1 CRITERIA / DESIGN SPECIFICATION In the structural investigation of the 9m and 6m Type Tower and the immediately affected roof framing due to the installation of the proposed telecom antennas. The modeling and analysis of the tower were performed using ETab 9.5
9M
Load criteria Dead Load :
Super imposed dead Load = 20 psf Parapet Wall Load = 120 lb per cuft ( as per site )
Live load :
Reactions at each point of Tripod. ( see Table) Service equipment load = as per requested loads Existing Water Tank load = according to Capacity
Wind Load:
As per Attached Wind Load reaction data V200 and V160
1.1 IMPORTANCE FACTOR For serviceability consideration, this shall be taken equal to 1.0
6M
MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
1.2 EXPOSURE CATEGORY / WIND SPEED-UP According Tower Reaction Tables, where all necessaries Service reactions are described. 1.3DESIGN CONSIDERATION In the analysis of the tower which in addition to the existing roof top, the design take into consideration for the proposed antenna and appurtenances as follows:
30 20 10
Fz@X (9m)
0 -10
1
2
3
4
Fz@X(6m)
@X
-20 -30 80
Fx'@XMax.= +/- 1.14 kN
60
@X
40 0 -40
Mx'@X Max.= +/- 0 kN*m
Fz@C (9m)
20 -20
1
2
3
4
My'@X Max.= +/- 0 kN*m
Fz@C(6m)
Fz'@XMax.= +/- 26.634 kN
@Center
60
-60 1
Fx© Max.= +/- 1.209 kN Fy© Max.= +/- 0.89 kN
1 57
Fy'@XMax.= +/- 7.581 kN
40
@C
20
Mx© Max.= +/- 0.921 kN*m
0
My© Max.= +/- 1.112 kN*m
-20
DN -Fz© Max.= + 57.011 kN Up- Fz© Max.= -48.827 kN
Fz@Y (9m)
1
2
3
4
Fz@Y(6m)
@Y
-40 -60
Fx'@YMax.= +/- 10.377 kN
@Y
Fy'@YMax.= +/- 0.531 kN Mx'@Y Max.= +/- 0 kN*m My'@Y Max.= +/- 0 kN*m Fz'@YMax.= +/- 37.713 kN
MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
The Analysis of the structure is based on the following Reaction table. ( The Max. reactions due to Wind)
Node Center
Support X
Support Y
Wind Load'@ 0° Case1
Horizontal
Vertical
Horizontal
Fx kN -1.204
Fz kN -33.362
Fy kN -0.001
Mx kNm -0.11
Moment Mz kNm 0
My kNm 1.084
Case2
45°
-0.881
-48.827
-0.885
-0.892
0
0.886
Case3
180°
1.209
41.546
0.006
0.138
0
-1.112
Case4
270°
0.886
57.011
0.89
0.921
0
-0.914
Case1
0°
-1.14
0.093
-0.365
0
0
0
Case2
45°
-0.531
26.634
-7.581
0
0
0
Case3
180°
1.138
0.259
0.362
0
0
0
Case4
270°
0.529
-26.281
7.578
0
0
0
Case1
0°
-10.377
37.713
0.366
0
0
0
Case2
45°
-7.585
26.638
-0.531
0
0
0
Case3
180°
10.374
-37.361
-0.368
0
0
0
Case4
270°
7.582
-26.286
0.529
0
0
0
Horizontal
Vertical
Horizontal
Fx kN 2.92
Fz kN -18.285
Fy kN -0.02
Mx kNm -0.061
Mz kNm 0
My kNm -3.036
The First criteria check list ( Reactions) for 9M and 6M Types
Reaction of RT Pole 9m (V200) is The Major Criteria check loads for 9 M and 6M Type Towers Installation.
Reaction of RT Pole 6m (V200)
Center
Support X
Support Y
Wind Load'@ 0° Case1
Moment
Case2
45°
2.05
-26.555
2.05
2.102
0
-2.102
Case3
180°
-2.917
21.632
0.023
0.07
0
3.027
Case4
270°
-2.047
29.902
-2.047
-2.093
0
2.093
Case1
0°
-10.678
20.177
0
0
0
0
Case2
45°
-7.536
14.289
-0.478
0
0
0
Case3
180°
10.675
-19.828
0
0
0
0
Case4
270°
7.533
-13.94
0.478
0
0
0
Case1
0°
-0.675
0.131
0.02
0
0
0
Case2
45°
-0.478
14.289
-7.536
0
0
0
Case3
180°
0.675
0.218
-0.023
0
0
0
Case4
270°
0.478
-13.94
7.533
0
0
0
1.4MATERIAL STRENGTH Material strength used for structural steel assumed to have complied with internationallyrecognized standards and have the following minimum yield strength.
- All steel pipes assumed to conform to ASTM A53 Grade with Minimum Yield Stress of 240MPa. - Structural Steel Plate assumed to have minimum yield s strength of 240 MPa. - Structural Connection Bolts assumed to conform to ASTM A325. - Anchor Bolts assumed to conform to ASTM A572 with minimum yield strength of 414 MPa. The Compressive Strength of reinforced concrete is assumed at 18MPa. Reinforcing steel bars are likewise assumed to have minimum yield strength of 275 Mpa. reinforcement, respectively.
The Second criteria check list ( Reactions) for 6M Type if the 9M Type reactions are not adaquate.
Node
MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
1.5 CODES AND REFERENCES
- AISC Steel Construction Manual, 9th,13th Edition - AISC LRFD "Load and Resistance Factor Design" Vol. 1, 3rd edition - ACI 318.99 , ACI318-05 / 1BC 2003 2 INVESTIGATION REPORT 2.1 INTRODUCTION This report summarizes the structural engineering investigation of the existing roof framing and the immediately affected of 2 types of Towers. The tower shall be utilized to carry additional telecommunication antennas, as indicated in tem 1.3. For this reason, a structural investigation is conducted to determine the structural integrity of the tower and the roof structures. 2.2 TOWER DESCRIPTION As per Towers specification (Type – 9M and 6M)
See Detail technical data sheets of each tower. 2.3 ROOOF DESCRIPTION The roof structural framing considered immediately affected by the transmitted tower load are the roof columns, beams and slab bounded along roof framing. 2.4 Assume Reinforcements tables: STRUCTURAL
Assume As, ACI 318-05 Minimum
REINTFORCEMENT OF "AS-BUILT" SECTION
MEMBER
SECTION (mm)
Typ.Column C-1
225
x 225
4 of Фmm
16
Per section
At X Direction B1
225
x 350
3 of Фmm
16
At top and bot.
Should be not less than the equivalent in ACI 318-05 Minimum Reinforcement if to be verified
At Y Direction B2
225
x 300
2 of Фmm
16
At top and bot.
Should be not less than the equivalent in ACI 318-05 Minimum Reinforcement if to be verified
Reinforcement
Note: SECTION dimensions are based from contractor's site survey. TOP and BTM(bottom) rebars are at ends and mid-span of beam, respectively or continuous. Refer to 1.5 MATERIAL STRENGTH for concrete and reinforcement characteristic. For the roof slab of 100mm thick, shrinkage and temperature reinforcement is only required. Hence, the same is safe should its "as-built" reinforcement would be Ф10mm spaced equally at 250mm placed along each side of the slab at the top and bottom layer positions.
Should be not less than the equivalent in ACI 318-05 Minimum Reinforcement if to be verified
MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
3.1 Calculation of wind forces The Reaction tables was given by The Vendor ( Wind Load calculation)
Reaction of RT Pole 9m (V200) Node 1
Service Wind WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG
5
6
Horizontal Fx kN -1.204 -0.881 1.209 0.886 -1.14 -0.531 1.138 0.529 -10.377 -7.585 10.374 7.582
Vertical Fy kN -33.362 -48.827 41.546 57.011 0.093 26.634 0.259 -26.281 37.713 26.638 -37.361 -26.286
Horizontal Fz kN -0.001 -0.885 0.006 0.89 -0.365 -7.581 0.362 7.578 0.366 -0.531 -0.368 0.529
Mx kNm -0.11 -0.892 0.138 0.921 0 0 0 0 0 0 0 0
Moment My kNm 0 0 0 0 0 0 0 0 0 0 0 0
Mz kNm 1.084 0.886 -1.112 -0.914 0 0 0 0 0 0 0 0
Horizontal Fx kN -0.781 -0.562 0.783 0.565 -0.688 -0.324 0.687 0.323 -6.239 -4.564 6.237 4.563
Vertical Fy kN -19.073 -28.521 26.621 36.07 0.141 16.319 0.204 -15.975 23.051 16.321 -22.706 -15.976
Horizontal Fz kN 0.002 -0.564 0.001 0.566 -0.218 -4.563 0.217 4.561 0.217 -0.324 -0.218 0.323
Mx kNm -0.039 -0.53 0.056 0.548 0 0 0 0 0 0 0 0
Moment My kNm 0 0 0 0 0 0 0 0 0 0 0 0
Mz kNm 0.685 0.529 -0.702 -0.546 0 0 0 0 0 0 0 0
Reaction of RT Pole 9m (V160) Node 1
Service Wind WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG
5
6
1.5m Node 1
x z
Node 6
o 9M 1.5m Node 5
MTE Engineering Co.,Ltd.
Fax: 513598, Mobile: 5019332, 5106643, 73042214
Reaction of RT Pole 6m (V200) Node 1
Service Wind WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG
4
5
Horizontal Fx kN 2.92 2.05 -2.917 -2.047 -10.678 -7.536 10.675 7.533 -0.675 -0.478 0.675 0.478
Vertical Fy kN -18.285 -26.555 21.632 29.902 20.177 14.289 -19.828 -13.94 0.131 14.289 0.218 -13.94
Horizontal Fz kN -0.02 2.05 0.023 -2.047 0 -0.478 0 0.478 0.02 -7.536 -0.023 7.533
Mx kNm -0.061 2.102 0.07 -2.093 0 0 0 0 0 0 0 0
Moment My kNm 0 0 0 0 0 0 0 0 0 0 0 0
Mz kNm -3.036 -2.102 3.027 2.093 0 0 0 0 0 0 0 0
Horizontal Fx kN 1.857 1.306 -1.855 -1.303 -6.732 -4.753 6.73 4.751 -0.426 -0.301 0.426 0.301
Vertical Fy kN -11.202 -16.418 13.973 19.189 12.784 9.075 -12.437 -8.728 0.151 9.075 0.196 -8.728
Horizontal Fz kN -0.01 1.306 0.012 -1.303 0 -0.301 0 0.301 0.01 -4.753 -0.012 4.751
Mx kNm -0.031 1.375 0.037 -1.369 0 0 0 0 0 0 0 0
Moment My kNm 0 0 0 0 0 0 0 0 0 0 0 0
Mz kNm -1.977 -1.375 1.971 1.369 0 0 0 0 0 0 0 0
Reaction of RT Pole 6m (V160) Node 1
Service Wind WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG WIND 0 DEG WIND 45 DEG WIND 180 DEG WIND 275 DEG
4
5
1.5m Node 1
x z
N
Node 4
6M 1.5m Node 5
Site Code:
YGN-0072
P1
P3
P2
P4
MTE engineerig Co.,Ltd.
STRUCTURAL ANALYSIS for Roof Top Installation
60%
SITE CODE: YGN-0072 SITE OWNER: … SITE ADDRESS: … PROPOSED STRUCTURE: position at:
1 2 3 4
1
9 9 9 9
1 2 3 4
Mu
50%
Vu
0% 1 2 Y-Beam is OK
3 4 Column is OK
Analysis (Etab)
9 9 9 9
12 12 12 12
Column Data
Analysis (Etab)
9 9 9 9
Analysis (Etab)
0.3 0.24 0.2 0.2
Flexural Shear 2 2 A s (in ) A vs (in /in)
Assume Steel Flexural Shear 2 2 A s (in ) A vs (in /in)
7.7 8 8 15
10 29 16 14
OK
4
0% 0% 0% 0% 0% OK
Check result D/C stress D/C stress ratio ratio (moment) (Shear) 15% 58% 49% 31% 58% OK
0% 0% 0% 0% 0% OK
Check result D/C stress ratio (moment)
31 1.25 0.013 23 1.25 0.013 23 1.25 0.013 16 1.25 0.013 Max. D/C Stress ratio of Column conclustion for Column
ADDITIONAL COMMENTS AND RECOMMENDATIONS: 9M is OK Remarks, The Max. D/C ratio of the Column is 18% (Moment) according to Load case 4 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the X beam is 39% (Moment) according to Load case 1 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the Y beam is 58% (Moment) according to Load case 2 And 0% D/C ( shear)with load Case all
(signed and sealed by structural engineer) STRUCTURAL ENGINEER
Vu 3
39% 29% 31% 20% 39%
Assume Steel M uy Flexural Shear (kip-in) A s (in 2 ) A vs (in 2 /in)
Mu
Check result D/C stress D/C stress ratio ratio (moment) (Shear)
2 47 2.6 0.62 0.021 2 185 5 0.62 0.021 2 156 4 0.62 0.021 2 100 4 0.62 0.021 Max. D/C Stress ratio of Beam 2 (Y direction) conclustion for Y direction beam
M ux D (in) V (kip) (kip-in) P (kip) W (in) u 9 9 9 9
Assume Steel
2 153 8.6 0.94 0.017 2 113 6.5 0.94 0.017 2 120 4 0.94 0.017 2 78 3 0.94 0.017 Max. D/C Stress ratio of Beam 1 (X direction) conclustion for X direction beam
cover(in M (kip- V u u in) W (in) D (in) ) (kip)
Beam 2( Y direction) Beam 2 (Y direction) Beam 2( Y direction) Beam 2 (Y direction)
Column check for Column check for Column check for Column check for
2
Beam data
Case Description
Load Case Description
14 14 14 14
4
100%
cover(in M u (kip- V u in) (kip) W (in) D (in) )
Beam 1( X direction) Beam 1 (X direction) Beam 1 (X direction) Beam 1 (X direction)
Column check case Type 9M
1
0%
Y direction Beam check result Type 9M
1 2 3 4
1 2 3 X-Beam is OK
Beam data
Case Description
Vu
0%
10%
Tripod is OK 2.5 ksi 40 ksi
Mu
20%
20%
RESULTS AND RECOMMENDATIONS: Tower type: 9M concrete f'c= Steel Fy = X direction Beam check result Type 9M
40%
D/C stress ratio (Shear)
15% 17% 13% 18% 18% OK
0% 0% 0% 0% 0% OK
MTE engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number: position at: 1
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code Case STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 1 YGN-0072 Originator: Nyunt Nyunt Checker: KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 8.93 12.75 8.60 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=14''
d=12.5''
ft-kips kips in.^2 in.
As=0.935
Doubly Reinforced Section
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 39% 32.29 ft-k >= Mu = 12.75 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 10.32 ksi fs(used) = 10.32 ksi s1(max) = 41.88 in. >= s1 = 3 in., O.K.
Shear Capacity Check for Beam-Type Section: φVc = 9.56 kips φVs = 7.23 kips φVn = φVc+φVs = 16.79 kips >= Vu = 8.6 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.066 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = 6.250 in. >= s2 = 5.88 in., O.K. Comments: The D/C stress ratio for Moment is 39% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.8448 in. Ig = 2058.00 in.^4 Mcr = 9.19 ft-k Icr = 912.47 in.^4 Ie = 2058.00 in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 24.56 k/in. z(allow) = 145.00 k/in. >= z = 24.56 k/in., O.K.
MTE engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number: position at: 1
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code Case STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 2 YGN-0072 Originator: Nyunt Nyunt Checker: KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 6.59 9.42 6.50 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=14''
d=12.5''
ft-kips kips in.^2 in.
As=0.935
Doubly Reinforced Section
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 29% 32.29 ft-k >= Mu = 9.42 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 7.62 ksi fs(used) = 7.62 ksi s1(max) = 56.70 in. >= s1 = 3 in., O.K.
Shear Capacity Check for Beam-Type Section: φVc = 9.56 kips φVs = 7.23 kips φVn = φVc+φVs = 16.79 kips >= Vu = 6.5 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.066 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = 6.250 in. >= s2 = 5.88 in., O.K. Comments: The D/C stress ratio for Moment is 29% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.8448 in. Ig = 2058.00 in.^4 Mcr = 9.19 ft-k Icr = 912.47 in.^4 Ie = 2058.00 in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 18.14 k/in. z(allow) = 145.00 k/in. >= z = 18.14 k/in., O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number: position at: 1
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code Case STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 3 YGN-0072 Originator: Nyunt Nyunt Checker: KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 7.00 10.00 4.00 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=14''
d=12.5''
ft-kips kips
As=0.935
in.^2 in.
Doubly Reinforced Section
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 31% 32.29 ft-k >= Mu = 10 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 8.09 ksi fs(used) = 8.09 ksi s1(max) = 53.39 in. >= s1 = 3 in., O.K. Per ACI 318-95 Code: dc = 1.5000 in. z= 19.27 k/in. z(allow) = 145.00 k/in.
>= z = 19.27 k/in.,
Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection: φVc = 9.56 kips fr = 0.375 ksi φVs = 7.23 kips kd = 3.8448 in. φVn = φVc+φVs = Ig = 2058.00 in.^4 16.79 kips >= Vu = 4 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 9.19 ft-k Icr = 912.47 in.^4 Av(prov) = 0.100 in.^2 = Av(stirrup) Ie = 2058.00 in.^4 (for deflection) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 31% and the D/C Shear Stress Ratio is 0 %
O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number: position at: 1
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code Case STRUCTURAL ANALYSIS Subject: 9M Beam 1( X direction) 4 YGN-0072 Originator: Nyunt Nyunt Checker: KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 4.55 6.50 3.00 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=14''
d=12.5''
ft-kips kips
As=0.935
in.^2 in.
Doubly Reinforced Section
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 20% 32.29 ft-k >= Mu = 6.5 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 5.26 ksi fs(used) = 5.26 ksi s1(max) = 82.14 in. >= s1 = 3 in., O.K.
Shear Capacity Check for Beam-Type Section: φVc = 9.56 kips φVs = 7.23 kips φVn = φVc+φVs = 16.79 kips >= Vu = 3 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 20% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.8448 in. Ig = 2058.00 in.^4 Mcr = 9.19 ft-k Icr = 912.47 in.^4 Ie = 2058.00 in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 12.52 k/in. z(allow) = 145.00 k/in.
>= z = 12.52 k/in., O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number: position at: 1
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 1 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 2.74 3.92 2.60 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=12''
d=10.5''
ft-kips kips in.^2 in.
As=0.935
Doubly Reinforced Section
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 15% 26.68 ft-k >= Mu = 3.92 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 3.81 ksi fs(used) = 3.81 ksi s1(max) = 113.48 in. >= s1 = 3 in., O.K. Per ACI 318-95 Code: dc = 1.5000 in. z= 10.38 k/in. z(allow) = 145.00 k/in. >= z = 10.38 k/in.,
Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection: φVc = 8.03 kips fr = 0.375 ksi φVs = 6.07 kips kd = 3.4719 in. φVn = φVc+φVs = Ig = 1296.00 in.^4 14.10 kips >= Vu = 2.6 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k Icr = Av(prov) = 0.100 in.^2 = Av(stirrup) 614.11 in.^4 Ie = 1296.00 in.^4 (for deflection) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 15% and the D/C Shear Stress Ratio is 0 %
O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number: position at: 1
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) YGN-0072 Originator: Nyunt Nyunt Checker: KTR
Case 2
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 10.79 15.42 5.00 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=12''
d=10.5''
ft-kips kips
As=0.935
in.^2 in.
Doubly Reinforced Section Warning: s2 > s2(max) allowed!
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 58% 26.68 ft-k >= Mu = 15.42 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 14.98 ksi fs(used) = 14.98 ksi s1(max) = 28.83 in. >= s1 = 3 in., O.K. Per ACI 318-95 Code: dc = 1.5000 in. z= 40.84 k/in. z(allow) = 145.00 k/in.
>= z = 40.84 k/in.,
Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection: φVc = 8.03 kips fr = 0.375 ksi φVs = 6.07 kips kd = 3.4719 in. φVn = φVc+φVs = Ig = 1296.00 in.^4 14.10 kips >= Vu = 5 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k Icr = 614.11 in.^4 Av(prov) = 0.100 in.^2 = Av(stirrup) Ie = 780.97 in.^4 (for deflection) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.066 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = 5.250 in. < s2 = 5.88 in., N.G. Comments: The D/C stress ratio for Moment is 58% and the D/C Shear Stress Ratio is 0 %
O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code Case Job Name: STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) 3 Job Number: YGN-0072 Originator: Nyunt Nyunt Checker: KTR
position at:
1
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 9.10 13.00 4.00 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=12''
d=10.5''
ft-kips kips in.^2 in.
As=0.935
Doubly Reinforced Section
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 49% 26.68 ft-k >= Mu = 13 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 12.64 ksi fs(used) = 12.64 ksi s1(max) = 34.19 in. >= s1 = 3 in., O.K.
Shear Capacity Check for Beam-Type Section: φVc = 8.03 kips φVs = 6.07 kips φVn = φVc+φVs = 14.10 kips >= Vu = 4 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 49% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.4719 in. Ig = 1296.00 in.^4 Mcr = 6.75 ft-k Icr = 614.11 in.^4 Ie = 892.40 in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 34.44 k/in. z(allow) = 145.00 k/in. >= z = 34.44 k/in., O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number: position at: 1
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code Case STRUCTURAL ANALYSIS Subject: 9M Beam 2( Y direction) 4 YGN-0072 Originator: Nyunt Nyunt Checker: KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 5.83 8.33 4.00 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=12''
d=10.5''
ft-kips kips in.^2 in.
As=0.935
Doubly Reinforced Section
Results: Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 31% 26.68 ft-k >= Mu = 8.33 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 8.10 ksi fs(used) = 8.10 ksi s1(max) = 53.34 in. >= s1 = 3 in., O.K.
Shear Capacity Check for Beam-Type Section: φVc = 8.03 kips φVs = 6.07 kips φVn = φVc+φVs = 14.10 kips >= Vu = 4 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 31% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.4719 in. Ig = 1296.00 in.^4 Mcr = 6.75 ft-k Icr = 614.11 in.^4 Ie = 1296.00 in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 22.08 k/in. z(allow) = 145.00 k/in. >= z = 22.08 k/in., O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
12.16
N.A.
300
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
10
20
30
40
0
50
d'=2 (typ.)
Member Section
-50
-50
-100
-100
-150
-150
-200
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
S.R. = Pu/φPn <= 1.0
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
54.61
18.32
4.03
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.3 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 15% S.R. = 0.151
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
1.30
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
ft-kips
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 112.33
350
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 7.70 0.83 2.58 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR position at: 1 Case 1 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
18.64
ft-kips
N.A.
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
d'=2 (typ.)
Member Section
10
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
30
40
50
0 -50
-100
-100
-150
-150
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
75.42
18.07
2.88
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.24 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 17% S.R. = 0.171
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
3.63
S.R. = Pu/φPn <= 1.0
20
-50
-200
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 61.72
350
300
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 8.00 2.42 1.92 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR position at: 1 Case 2 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
16.22
ft-kips
N.A.
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
d'=2 (typ.)
Member Section
10
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
30
40
50
0 -50
-100
-100
-150
-150
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
75.42
18.07
2.88
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.2 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 13% S.R. = 0.132
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
2.00
S.R. = Pu/φPn <= 1.0
20
-50
-200
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 97.31
350
300
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 8.00 1.33 1.92 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR position at: 1 Case 3 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
9.61
ft-kips
N.A.
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
d'=2 (typ.)
Member Section
10
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
30
40
50
0 -50
-100
-100
-150
-150
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
118.54
10.54
1.07
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.2 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 18% S.R. = 0.181
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
0.93
S.R. = Pu/φPn <= 1.0
20
-50
-200
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 123.50
350
300
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 15.00 1.17 1.33 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 9M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR position at: 1 Case 4 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%
MTE engineerig Co.,Ltd.
STRUCTURAL ANALYSIS for Roof Top Installation
100%
SITE CODE: YGN-0072 SITE OWNER: … SITE ADDRESS: … PROPOSED STRUCTURE: position at:
50%
1
Tripod 2.5 ksi 40 ksi
4
100%
10%
Mu
0%
Vu 1
W (in) D (in) 9 14 9 14 9 14 9 14
Y direction Beam check result Type 6M
2
3 4 Column is OK
50%
Mu Vu
0% 1 2 3 Y-Beam is OK
4
Analysis (Etab) Assume Steel Check result Flexural Shear M u (kip- V u ratio ratio cover(in) in) (kip) A s (in 2 ) A vs (in 2 /in) (moment) (Shear) 2 0 0 0.94 0.017 0% 2 0 0 0.94 0.017 0% 2 0 0 0.94 0.017 0% 2 0 0 0.94 0.017 0% 0% Max. D/C Stress ratio of Beam 1 (X direction) OK OK conclustion for X direction beam
W (in) D (in) 9 12 9 12 9 12 9 12
Analysis (Etab) Assume Steel Check result Flexural Shear M u (kip- V u ratio ratio cover(in) in) (kip) A s (in 2 ) A vs (in 2 /in) (moment) (Shear) 2 0 0 0.62 0.021 0% 2 0 0 0.62 0.021 0% 2 0 0 0.62 0.021 0% 2 0 0 0.62 0.021 0% 0% Max. D/C Stress ratio of Beam 2 (Y direction) OK OK conclustion for Y direction beam
0% 0% 0% 0% 0%
Beam data
Case Description 1 Beam 2( Y direction) 2 Beam 2 (Y direction) 3 Beam 2( Y direction) 4 Beam 2 (Y direction)
Column check for Column check for Column check for Column check for
3
Beam data
Case Description 1 Beam 1( X direction) 2 Beam 1 (X direction) 3 Beam 1 (X direction) 4 Beam 1 (X direction)
1 2 3 4
2
X-Beam is OK
1
RESULTS AND RECOMMENDATIONS:
Column check case Type 6M Load Case Description
Vu
0%
20%
Tower type: 6M concrete f'c= Steel Fy = X direction Beam check result Type 6M
Mu
0% 0% 0% 0% 0%
Column Data
Analysis (Etab) Assume Steel Check result M ux M uy Flexural Shear ratio ratio 2 2 W (in) D (in) V (kip) P u (kip) (kip-in) (kip-in) A s (in ) A vs (in /in) (moment) (Shear) 9 9 9 9
9 9 9 9
0.24 0.15 0.1 0.1
8 8 8 12.7
29 20 12 10
23 1.25 0.013 16 1.25 0.013 8.3 1.25 0.013 10.5 1.25 0.013 Max. D/C Stress ratio of Column conclustion for Column
ADDITIONAL COMMENTS AND RECOMMENDATIONS: 6M is OK Remarks, The Max. D/C ratio of the Column is 17% (Moment) according to Load case 1 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the X beam is 0% (Moment) according to Load case 4 And 0% D/C ( shear)with load Case all The Max. D/C ratio of the Y beam is 0% (Moment) according to Load case 4 And 0% D/C ( shear)with load Case all
(signed and sealed by structural engineer) STRUCTURAL ENGINEER
17% 12% 9% 14% 17% OK
0% 0% 0% 0% 0% OK
MTE engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 1 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi
h
ksi
d
in. in.
As
in.
Singly Reinforced Section
in.^2
d'=2''
in.
b=9''
in.
A's
in.
=0.935
in.^2
h=14''
ft-kips
d=12.5''
ft-kips kips
As=0.935
in.^2
Doubly Reinforced Section
in.
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 32.29 ft-k >= Mu = 0 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0!
Shear Capacity Check for Beam-Type Section: φVc = 9.56 kips φVs = 7.23 kips φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.8448 in. Ig = 2058.00 in.^4 Mcr = 9.19 ft-k Icr = 912.47 in.^4 Ie = #DIV/0! in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in. >= z = 0 k/in., O.K.
MTE engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 2 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi
h
ksi
d
in. in.
As
in.
Singly Reinforced Section
in.^2
d'=2''
in.
b=9''
in.
A's
in.
=0.935
in.^2
h=14''
ft-kips
d=12.5''
ft-kips kips
As=0.935
in.^2
Doubly Reinforced Section
in.
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 32.29 ft-k >= Mu = 0 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0!
Shear Capacity Check for Beam-Type Section: φVc = 9.56 kips φVs = 7.23 kips φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.8448 in. Ig = 2058.00 in.^4 Mcr = 9.19 ft-k Icr = 912.47 in.^4 Ie = #DIV/0! in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in.
>= z = 0 k/in., O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code Case STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) 3 YGN-0072 Originator: Nyunt Nyunt Checker: KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi
h
ksi
d
in. in.
As
in.
Singly Reinforced Section
in.^2
d'=2''
in.
b=9''
in.
A's
in.
=0.935
in.^2
h=14''
ft-kips
d=12.5''
ft-kips kips
As=0.935
in.^2
Doubly Reinforced Section
in.
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 32.29 ft-k >= Mu = 0 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0!
Shear Capacity Check for Beam-Type Section: φVc = 9.56 kips φVs = 7.23 kips φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.8448 in. Ig = 2058.00 in.^4 Mcr = 9.19 ft-k Icr = 912.47 in.^4 Ie = #DIV/0! in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in.
>= z = 0 k/in., O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 6M Beam 1( X direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 4 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 12.500 14.000 0.935 3.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi
h
ksi
d
in. in.
As
in.
Singly Reinforced Section
in.^2
d'=2''
in.
b=9''
in.
A's
in.
=0.935
in.^2
h=14''
ft-kips
d=12.5''
ft-kips kips
As=0.935
in.^2
Doubly Reinforced Section
in.
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00831 ρ(min) = 0.00500 As(min) = 0.563 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03151 As(max) = 3.545 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 32.29 ft-k >= Mu = 0 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0!
Shear Capacity Check for Beam-Type Section: φVc = 9.56 kips φVs = 7.23 kips φVn = φVc+φVs = 16.79 kips >= Vu = 0 kips, O.K. φVs(max) = 38.25 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.8448 in. Ig = 2058.00 in.^4 Mcr = 9.19 ft-k Icr = 912.47 in.^4 Ie = #DIV/0! in.^4 (for deflection)
Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in.
>= z = 0 k/in., O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 1 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi
h
ksi
d
in. in.
As
in.
Singly Reinforced Section
in.^2
d'=2''
in.
b=9''
in.
A's
in.
=0.935
in.^2
h=12''
ft-kips
d=10.5''
ft-kips kips
As=0.935
in.^2
Doubly Reinforced Section
in.
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 26.68 ft-k >= Mu = 0 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0! Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in.
>= z = 0 k/in.,
Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection: φVc = 8.03 kips fr = 0.375 ksi φVs = 6.07 kips kd = 3.4719 in. φVn = φVc+φVs = Ig = 1296.00 in.^4 14.10 kips >= Vu = 0 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k Icr = 614.11 in.^4 Av(prov) = 0.100 in.^2 = Av(stirrup) Ie = #DIV/0! in.^4 (for deflection) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 2 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi
h
ksi
d
in. in.
As
in.
Singly Reinforced Section
in.^2
d'=2''
in.
b=9''
in.
A's
in.
=0.935
in.^2
h=12''
ft-kips
d=10.5''
ft-kips kips
As=0.935
in.^2
Doubly Reinforced Section
in.
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 26.68 ft-k >= Mu = 0 ft-k, O.K.
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0! Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in.
>= z = 0 k/in.,
Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection: φVc = kips 8.03 fr = 0.375 ksi φVs = 6.07 kips kd = 3.4719 in. φVn = φVc+φVs = Ig = 1296.00 in.^4 14.10 kips >= Vu = 0 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 6.75 ft-k Icr = 614.11 in.^4 Av(prov) = 0.100 in.^2 = Av(stirrup) Ie = #DIV/0! in.^4 (for deflection) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
O.K.
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 3 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=12''
d=10.5''
ft-kips kips
As=0.935
in.^2 in.
Doubly Reinforced Section
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 26.68 ft-k >= Mu = 0 ft-k, O.K. Shear Capacity Check for Beam-Type Section: φVc = 8.03 kips φVs = 6.07 kips φVn = φVc+φVs = 14.10 kips >= Vu = 0 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0! Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in.
>= z = 0 k/in., O.K.
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.4719 in. Ig = 1296.00 in.^4 Mcr = 6.75 ft-k Icr = 614.11 in.^4 Ie = #DIV/0! in.^4 (for deflection)
MTE Engineering
RECTANGULAR CONCRETE BEAM/SECTION ANALYSIS
Job Name: Job Number:
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-99 Code STRUCTURAL ANALYSIS Subject: 6M Beam 2( Y direction) YGN-0072 Originator: Nyunt Nyunt Checker:
Case 4 KTR
Input Data: b
Beam or Slab Section? Exterior or Interior Exposure? Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Beam Width, b = Depth to Tension Reinforcing, d = Total Beam Depth, h = Tension Reinforcing, As = No. of Tension Bars in Beam, Nb = Tension Reinf. Bar Spacing, s1 = Clear Cover to Tension Reinf., Cc = Depth to Compression Reinf., d' = Compression Reinforcing, A's = Working Stress Moment, Ma = Ultimate Design Moment, Mu =
Ultimate Design Shear, Vu = Total Stirrup Area, Av(stirrup) = Tie/Stirrup Spacing, s2 =
Beam Exterior 40 2.5 9.000 10.500 12.000 0.935 2.000 3.000 1.500 2.000 0.935 0.00 0.00 0.00 0.100 5.8824
ksi ksi
h
d
in. in.
As
in.
Singly Reinforced Section
in.^2
in.
d'=2''
b=9''
in. in. in.^2 ft-kips
A's =0.935 h=12''
d=10.5''
ft-kips kips
As=0.935
in.^2 in.
Doubly Reinforced Section
Results: #DIV/0! Moment Capacity Check for Beam-Type Section: β1 = 0.85 c= 2.089 in. a= 1.775 in. ρb = 0.03093 ρ(prov) = 0.00989 ρ(min) = 0.00500 As(min) = 0.473 in.^2 <= As = 0.94 in.^2, O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2/face ρ(max) = 0.03310 As(max) = 3.127 in.^2 >= As = 0.94 in.^2, O.K. f 's = 3.69 ksi (A's does not yield) φMn = 0% 26.68 ft-k >= Mu = 0 ft-k, O.K. Shear Capacity Check for Beam-Type Section: φVc = 8.03 kips φVs = 6.07 kips φVn = φVc+φVs = 14.10 kips >= Vu = 0 kips, O.K. φVs(max) = 32.13 kips >= Vu-(phi)Vc = 0 kips, O.K. Av(prov) = 0.100 in.^2 = Av(stirrup) 0% Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. Av(min) = 0.000 in.^2 <= Av(prov) = 0.1 in.^2, O.K. s2(max) = N.A. in. Comments: The D/C stress ratio for Moment is 0% and the D/C Shear Stress Ratio is 0 %
Crack Control (Distribution of Reinf.): Per ACI 318-99 Code: Es = 29000 ksi Ec = 2850 ksi n= 10.18 n = Es/Ec fs = 0.00 ksi fs(used) = 0.00 ksi s1(max) = #DIV/0! #DIV/0! Per ACI 318-95 Code: dc = 1.5000 in. z= 0.00 k/in. z(allow) = 145.00 k/in.
>= z = 0 k/in., O.K.
Moment of Inertia for Deflection: fr = 0.375 ksi kd = 3.4719 in. Ig = 1296.00 in.^4 Mcr = 6.75 ft-k Icr = 614.11 in.^4 Ie = #DIV/0! in.^4 (for deflection)
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
18.64
ft-kips
N.A.
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
d'=2 (typ.)
Member Section
10
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
30
40
50
0 -50
-100
-100
-150
-150
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
75.42
18.07
2.88
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.24 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 17% S.R. = 0.171
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
3.63
S.R. = Pu/φPn <= 1.0
20
-50
-200
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 61.72
350
300
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 8.00 2.42 1.92 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR Case 1 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
17.78
ft-kips
N.A.
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
d'=2 (typ.)
Member Section
10
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
30
40
50
0 -50
-100
-100
-150
-150
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
97.31
16.22
2.00
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.15 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 12% S.R. = 0.122
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
2.50
S.R. = Pu/φPn <= 1.0
20
-50
-200
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 85.35
350
300
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 8.00 1.67 1.33 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR Case 2 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
13.56
ft-kips
N.A.
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
d'=2 (typ.)
Member Section
10
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
30
40
50
0 -50
-100
-100
-150
-150
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
119.51
10.33
1.04
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.1 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 9% S.R. = 0.094
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
1.50
S.R. = Pu/φPn <= 1.0
20
-50
-200
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 108.51
350
300
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 8.00 1.00 0.69 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR Case 3 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%
MTE Engineering
RECTANGULAR CONCRETE BEAM/COLUMN ANALYSIS
Ultimate Design Axial Load, Pu = Ultimate Design Moment, Mux = Ultimate Design Moment, Muy =
Total Top/Bot. Long. Bars, Ntb = Top/Bot. Longitudinal Bar Size = Total Side Long. Bars, Nsb = Side Longitudinal Bar Size =
Lx=9 Y
ksi.
in. in.
X
in.
Ly=9
Nsb=0
kips
8.59
ft-kips
N.A.
250
250
200
200
150
150
Ntb=4
100
100
50
0 0
d'=2 (typ.)
Member Section
10
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
30
40
50
0 -50
-100
-100
-150
-150
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
-200
φMnx (ft-k)
10
20
40
50
φMny (ft-k)
Y-axis Flexure and Axial Load Interaction Diagram Points φPny (k) φMny (ft-k) ex (in.) Comments 170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
0.00 0.00 0.70 1.77 2.45 3.76 4.08 7.59 (Infinity ) 0.00
Nom. max. compression = φPo Allowable φPn(max) = 0.8*φPo
Min. eccentricity 0% rebar tension = 0 ksi 25% rebar tension = 10 ksi 50% rebar tension = 20 ksi 100% rebar tension = 40 ksi φPn = 0.1*f'c*Ag Pure moment capacity Pure axial tension capacity
128.61
8.86
0.83
Effective Length Criteria for "Short" Column:
k*Lu <=
4.95
ft. (for k*Lu/r(min) <= 22)
k*Lu <=
9.00
ft. (for k*Lu/r(min) <= 40)
Column Shear check Vu(Max.)= 0.1 kip Ф Vc = 4.725 kip Req'd AVs=
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: S.R. = (Mux/φMnx)^1.15 + (Muy/φMny)^1.15 <= 1.0 14% S.R. = 0.138
30
Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: φPny (k) φMny (ft-k) ex (in.)
0.79
S.R. = Pu/φPn <= 1.0
20
-50
-200
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: kips φPn = 1/(1/φPnx + 1/φPny -1/φPo) <= 1.0 φPn = N.A. S.R. =
300
0
Member Uniaxial Capacity at Design Eccentricity, ey: Interpolated Results from Above: φPnx (k) φMnx (ft-k) ey (in.) 130.85
350
300
ft-kips
X-axis Flexure and Axial Load Interaction Diagram Points φPnx (k) φMnx (ft-k) ey (in.) Comments 0.00 0.00 7.99 15.43 17.74 18.75 18.24 12.81 11.81 0.00
350
50
Gross reinforcing ratio provided: ρg = 0.01531
170.72 136.58 136.58 104.77 86.87 59.85 53.64 20.25 0.00 -44.64
400
ksi
Results:
Location Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7 Point #8 Point #9 Point #10
400
φPny (k)
40 2.5 9.000 9.000 2.000 12.70 0.83 0.88 4 5 0 5
φPnx (k)
Reinforcing Yield Strength, fy = Concrete Comp. Strength, f 'c = Total Member Width, Lx = Total Member Depth, Ly = Distance to Long. Reinforcing, d' =
Y-AXIS INTERACTION DIAGRAM
X-AXIS INTERACTION DIAGRAM
For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing (per ACI 318-99 Code) Job Name: STRUCTURAL ANALYSIS Subject: 6M Column check case Job Number: YGN-0072 Originator: Nyunt Nyun Checker: KTR Case 4 Input Data:
Pure Axial Compression Capacity w/o Reinf.: φPn = 96.39 kips φPn = 0.80*0.70*(0.85*f'c*Ag)
2 0 in
Tie Min. Size & Max. Spac.: #3@9'' 0.00%