175980462.xls.ms_office
Summary
1
Summary Sheet INPUT DATA Bridge NO Proposed Span Loading
8
Project Name
1x
30.5
m PSC
H.M.Loading Common Level
Description
DPCL
Level ( m )
Proposed Formation Level HFL Deepest Scour Lvl Front Bed Level
19.444 13.400 10.192 11.700
Bearing + PedestalThick (m ( m) Lowest Water Level ( LWL )
0.016 -11.000
Super Str. Drg. No
SLAB 11521
Between Stn. Km Chainage River Individual Level
Description
Abt
Bottom Of Slab Top of Bed Block Bottom of Bed Block T op of Foundation Bottom of Foundation Thickness of Bed Block Observed Scour Level
18.857 18.841 18.091 10.000 -10.000 0.750 11.700 10.000
Top of Foundation( Back Side)
Span & Load Description
Abt
Unit
Clear Span Effective Span Overall Span Thickness of Slab/ Girder Dead Wt. of Girder Wt of Track / m run Ballast Cushion Live Load (OSL) Long Load (OSL ) Live Load ( TSL ) Long Load ( TSL )
30.5 31.93 32.89 0.845 65.3 0.45 0 460.9 120 -
m m m m t t /m m t t t t
Reference / Remarks
C/C of Bearing as per Data Given in RDSO Drg. O/A Length of Girder as per Data Given in RDSO Drg. Thickness of Super Str with Wearing Coat As per RDSO Drg. Unballasted Deck As per Cl . 2 .2 . 2 Br Rule As per Appendix -II -II Br Rule As per Appendix -VII -VII Br Rule As per Appendix -II -II Br Rule As per Appendix -VII -VII Br Rule
Soil & Seismic Data Description Angle of Repose of of Back Soil Angle of friction friction bet. Soil Soil & Masonary
Coff. Of Friction Safe Bearing Capacity Seismic Zone Zone Factor
a=
Value 35 11.7 0.5 15 III 0.04
Unit deg deg
Refrence / Remarks As per table " I " of Sub Str. Code ( As per Soil report report for back fill fill not available) available) 1/3 of Phi (Angle of repose As per Soil report report or tan (ø) at base base of Foundation Foundation
t/m
As per Soil report report or Bore log available As per Appendix XV of Br Rule As per Cl 2-12-3-3 2-12-3-3 Bridge Rule
175980462.xls.ms_office 1 2
Bridge No
3 4 5 6
Prop. Span Project Std. Of Loading
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 24 25 26 27 28 30
33 34 35 36
31 32 33
37 38
34
39 40 41 42
35
43 44 45
36
RCC Abutment DESIGN OF ABUTMENT ( RCC ) 8 Prop Formation Level Top of Foundation 1x 30.500 +0x 0.000 PS C Top of Bed Block DPCL Bed Level H.M.Loading First Checking Level Prop 2nd Chk Level Clear Span 30.500 Effective Span 31.926 Loaded Length of Girder/SLAB. 32.886 2 Live Load Surcharge Dead Load= 6.200 t/m 17.000 Total Load of Girder/SLAB 65.300 Dead Load of p.way per Running Metre 0.500 Total Live load on Girder 460.850 Total Long. load on Girder 120.000 Barrel Length of Abutment 7.000 Top Wi Width of of ab abutment 1.520 Dist From C/c of Bearing To Front of ABT. 0.713 Height From Formation To Bed Block...= 0.603 Thk of Pedestal = 0.400 Bearing = 0.065 m Cap 0.750 Height form bottom of Cap to t o TOP of FOUNDATION 8.091 Width of of Be Bed Bl Block 3.660 Dead Load Surcharge 6.200 Density of back fill 1.800 Width of Live Load Distribution 3.000 phi (r (radian) 35.000 Deg 0.611 f = del (r (radian) 11.667 Deg 0.204 d = Height of Passive from Top of Foundation 1.700 Coeff. of friction for phi soil 0.500 DEGREE OF CURVE 0.000 SLAB ( CUSHION = 1 , CUSHION LESS = 2 ) 2.000 Seismic Parameter :Zone = III 0.040 b = 1.500 I = a = Weight of Approach Slab = 0.000 Length of Approach Slab 0.000 Eccentricity of Approach Slab from C/L of Abt -0.760 Abutment Cap Detail Top width of cap = 1.695 m Top Length of Cap 6.850 Thickness at End = 0.750 m Thickness at Face 0.750 Detail of Dirt Wall :Length of Dirt Wall = 6.850 Thickness of Dirt Wall = 0.300 Height of Dirt Wall = 2.210 Load from Straight Return :Load of Straight Return Wall ( 1 Return ) 0.000
2
19.444 10.000 18.841 11.700 18.006 14.586 m m m 2 t/m t t/m t t m m m m m m 2
t/m 3 t/m m radian radian m Degree
1.000 t m m m m m m m t
175980462.xls.ms_office 1 2
Bridge No
3 4 5 6
Prop. Span Project Std. Of Loading
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 24 25 26 27 28 30
33 34 35 36
31 32 33
37 38
34
39 40 41 42
35
43 44 45
36
RCC Abutment DESIGN OF ABUTMENT ( RCC ) 8 Prop Formation Level Top of Foundation 1x 30.500 +0x 0.000 PS C Top of Bed Block DPCL Bed Level H.M.Loading First Checking Level Prop 2nd Chk Level Clear Span 30.500 Effective Span 31.926 Loaded Length of Girder/SLAB. 32.886 2 Live Load Surcharge Dead Load= 6.200 t/m 17.000 Total Load of Girder/SLAB 65.300 Dead Load of p.way per Running Metre 0.500 Total Live load on Girder 460.850 Total Long. load on Girder 120.000 Barrel Length of Abutment 7.000 Top Wi Width of of ab abutment 1.520 Dist From C/c of Bearing To Front of ABT. 0.713 Height From Formation To Bed Block...= 0.603 Thk of Pedestal = 0.400 Bearing = 0.065 m Cap 0.750 Height form bottom of Cap to t o TOP of FOUNDATION 8.091 Width of of Be Bed Bl Block 3.660 Dead Load Surcharge 6.200 Density of back fill 1.800 Width of Live Load Distribution 3.000 phi (r (radian) 35.000 Deg 0.611 f = del (r (radian) 11.667 Deg 0.204 d = Height of Passive from Top of Foundation 1.700 Coeff. of friction for phi soil 0.500 DEGREE OF CURVE 0.000 SLAB ( CUSHION = 1 , CUSHION LESS = 2 ) 2.000 Seismic Parameter :Zone = III 0.040 b = 1.500 I = a = Weight of Approach Slab = 0.000 Length of Approach Slab 0.000 Eccentricity of Approach Slab from C/L of Abt -0.760 Abutment Cap Detail Top width of cap = 1.695 m Top Length of Cap 6.850 Thickness at End = 0.750 m Thickness at Face 0.750 Detail of Dirt Wall :Length of Dirt Wall = 6.850 Thickness of Dirt Wall = 0.300 Height of Dirt Wall = 2.210 Load from Straight Return :Load of Straight Return Wall ( 1 Return ) 0.000
2
19.444 10.000 18.841 11.700 18.006 14.586 m m m 2 t/m t t/m t t m m m m m m 2
t/m 3 t/m m radian radian m Degree
1.000 t m m m m m m m t
175980462.xls.ms_office 48
RCC Abutment
3
Distribution Diagram
49
7.000
50 51
18.841
52
3.660
53
1
54 55 56
1 Width of Distri.
5.330
18.006 1st chk lvl
57
1.670
58
17.171
59 60 61 62 63 64 65 66
Width of Distri.
7.000
14.586 2nd chklvl
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
10.000
TOF
175980462.xls.ms_office
RCC Abutment Formatio Level
94 95 96 97 98
0 1 2 2
Bottom o 19.306 Girder Top of 18.841 Cap
100
102 103
19.444 F.L
300
99
101
4
0 5 7
1695
104 105 106
0 Bott Bottom om o 18.0 18.091 91 Cap
107 108 109 110 111 112
1520
113 114 115 116 117
1st ch chk LVL
18.006
2nd CH LVL
14.586
118 119 120 121 122 123 124 125 126 127
Top of 10.000 Foundation
128 129 130 131 132 133 134 135 136 137
Area of X -section ( 1 m Width ) = Section Modulus = Zxx =
2
1.520 m 3 0.385 m
175980462.xls.ms_office
RCC Abutment
5
138 139 140 141 142 143 144 145 146 147 148 149 150
DESIGN OF ABUTMENT BRIDGE NO = 8 PROJECT = DPCL 1.000 DEAD LOAD ( SIDL ) (i) Loaded length of Girder / Slab = 32.886 m DL @ 1stCHK LVL (ii) Weight of Track = 0.500 t/m 81.743 / ( 2 x 5.33 ) (iii) Weight of Slab / Girder = 65.300 t = 7.668 /m (WIDTH) (iv) Total weight of Track = DL @ 2nd CHK LVL 0.500 X 32.886 = 16.443 t 81.743 / ( 2 x 7 ) Total Dead Load = 81.743 t = 5.839 /m (WIDTH) Dead Load on Each Abutment / m width ( At Top of Foundation) 81.743 / (2X 7.000 ) = 5.839 (WIDTH) 2.000 LIVE LOAD
L :10 L :13 L :12
151
Standard Of Loading = H. M.Loadi ng Loaded length of Girder / Slab = 32.886 m Live Load without Impact = 460.850 t Coff . Of Dynamic Augment as per Bridge Rule Clause No 2.4.1.1
152 153 154 155
L :14
156 157
159
8 6+L Dynamic Augment At First Checking Level CDA =
158
(i)
0.150
+
= 0.15 +
8
=
6 + 32.886
160
As per Cl 5.4 ( c ) of sub str. Code full CDA to be taken
161
0.356
162 163
(ii)
Dynamic Augment At 2nd Checking Level
164
As per Cl 5.4 ( c ) of sub str. Code full CDA to be taken
165
0.356
166 167
(iii)
Dynamic Augment At Top of Foundation
168
As per Cl 5.4 ( c ) of sub str. Code full CDA to be taken
169
0.356
170 171 172
2.(a). (i)
Live Load /m (Width) At First Checking Level 460.850 (2X
(ii)
Live load with Impact 624.788 / At 2nd Checking Level Live load with Impact
460.850
624.788 / At the Top Of Foundation
(2X
Live load with Impact
460 850
173 174 175 176
X (1 + 0.356 5.330 ) =
)
= 624.788 t 58.611 t/m
L :56
177 178 179 180
(iii)
X (1 +
0.356
)
7.000 ) =
=
624.788 t
44.628 t/m
L :65
181 182
X (1 +
0 356
)
=
624 788 t
0.356
175980462.xls.ms_office 199
4.000
200 201 202
RCC Abutment
6
ACTIVE EARTH PRESSURE For Calculating the Active Earth Pressure COULOMB'S Theory will Fallowed As Per This Theory The Active Earth Pressure Is Given As Under 2 0.5 X KA X w X (H) per unit length of wall Pa =
203
Ka =
204
Cos^2(f - a)
205
Cos^2(a) Cos(a + d ) [1+
Sin(f + d) Sin(f - I ] ^2 Cos(a+ d) Cos (a - I) Fallowing values are taken for calculating the active earth pressure a = 0.000 Radians f = 0.611 Radians a = 0.000 Radians d = 0.204 Radians i = 0.000 Radians Hence Ka = 0.251
206 207 208 209 210 211 212 213 214 215 216 217 218 219
Earth Pressure Due to Seismic E ffect a = b = a (h) = 0.040 x 1.500 a (v) = a (h) / 2= 0.060
5.12.6.1
I = 1.00 2
x /
= =
0.060 0.030
220 221 222 223 224 225 226 227 228
a & " + " h t i w I e s a C
l =
tan
-1
a (h) 1 +a (v)
=
tan
-1
1+
0.060 0.030
= =
0.058
With ( + )
0.774 0.628
2
( 1 + a v ) Cos (f - a - l ) e Ca = u l a V " + " Ca =
2
Cos( l )Cos (a) Cos(a + d + l)
Sin(f + d) Sin(f - i - l ) Cos(a+ d + l) Cos (a - i)
1 +
2
0.292
229 230 231 232 233 234 235 236 237 238
bl = & " " h t i w e Ca = u V l I a e V s " a C " Ca =
tan
-1
a (h) 1 -a (v)
=
tan
-1
1-
0.030 0.000
= =
0.030
With ( - )
2
( 1 - a v ) Cos (f - a - l ) 2
Cos( l )Cos (a) Cos(a + d + l)
Sin(f + d) Sin(f - i - l ) Cos(a+ d + l) Cos (a - i)
1 +
0.267
239 240
Final Ca =
0.292 ( Max Value of above 4 i.e a,b)
241 242
0.719 0.640
Dynamic Increment = Ca - Ka =
0.292
-
0.251
=
0.041
2
Sub Str
175980462.xls.ms_office (iii)
268 269 270 271 272 273 274
RCC Abutment Active Earth Pressure at Top Of Foundation Height form Formation Level 9.444 m Pa = 0.500 X 0.251 X 1.800 Pa = 20.151 t/m Horizontal Component Of Active Earth Pressure Pah = 20.151 X COS( 0.000 + Pah = 19.735 t/m Will act at 9.444
7
2&3 2
X (
9.444
)
0.204 /3 =
) 3.148
m
275 276
5.000
EARTH PRESSURE DUE TO SURCHARGE
277
(i)
278 279 280 281
At First Checking Level Height = H = Length of Abutment = L = W idth Of Dis tribut ion = B =
L :11
1.438 7.000 3.000
282
L :25
283
Since
m m m
Live Load sur =S= 17.000 Dead Load Sur = 6.200
t/m^2 t/m^2
L :11
H
<
(L-B)
284
Case no
285 286
P1 = P1 =
287 288
1 Will be Used (S+V) X Ka x H (B+H) 1.887 t/m
Will act at
H/2
m
289
Horizontal Component P1h = 1.887 X COS( P1h = 1.848 t/m
290 291 292
0.000
+ 0.204 Will act a 0.719
) m
293 294
P2 =
295
(S+V)XKa X H^2 2 X B X (B+H)
296
P2 = 0.452 t/m Y2 = 0.959 Metre Horizontal Component P2h = 0.452 X COS( = 0.443 t/m
297 298 299 300 301
0.000
Will act a
2H/3
+ Will Act
0.204 0.959
) Metre
302 303 304 305 306 307 308
(ii)
At 2nd Checking Level Height = H = 4.859 m Length of Abutment = L = 7.000 m W idth Of Dis tribut ion = B = 3.000 m Since H > CASE NO.= 2 will be used
L :261 L :16 L :25
(L-B)
309 310
P1 =
311 312
P1 =
(S+V) X Ka x H L 4.042 t/m
Will act at = H/2 m = 2.429 m
175980462.xls.ms_office
RCC Abutment WILL ACT AT =
344
8
8.111 Metre
345 346
6.000
Calculation Of Reaction from Approach Slab
347
Load on per unit Barrel Length =
348
350
0.000
/
7.000
x
2 =
=
0.000
t
7.000 =
0.000
t-m
7.000 =
0.000
t-m
L :34
349
7.000
Moment Due to Weight of Return
351 352
Total Load from Return =
0.000
x
Total load / Width
0.000
/
2.000
353 354
=
355
Eccentricity from back face of Wall =
356
-1.700 m
357 358
Total Moment =
0.000 t-m
Moment / m width
=
359 360
0.000
/
361 362
8.000
Calculation of Self Weight of Abutment :-
363
Considering 1 m Width
364 365
366 367 368 369 370 371 372 373
L ( b ( Vert. Density Centre of Abt ( Moment Weight ( 3) ( t-m ) Horz.) ) ( t /m m) Dirt Wall 0.300 2.210 2.500 1.658 -0.610 -1.011 Bed block 1.695 0.750 2.500 3.178 0.088 0.278 Lower Rec portion 1.520 0.000 2.500 0.000 0.000 0.000 Lower Triangle Portion 0.175 0.000 2.500 0.000 0.818 0.000 From bott of BB to 1st chk lv 1.520 0.085 2.500 0.323 0.000 0.000 from 1st chk lvl to 2nd lvl 1.520 3.421 2.500 12.998 0.000 0.000 from 2nd chk lvl to top of Fn 1.520 4.586 2.500 17.425 0.000 0.000 Item
374 375 376 377 378
Levels Weight Moment Load up 1st chk LVL 5.159 -0.733 Load up to 2nd chk lvl 18.157 -0.733 Load up to top of Foundatio 35.581 -0.733
379 380
9.000
SEISMIC FORCE
381
HORZ. SEISMIC COFF. (ALPHA h ) =a o X b X I VERT. SEISMIC COFF. (ALPHA v) =ALPHA h /2=
382 383
=
0.060 0.030
384 385 386 387
a
1st Checking Level DESCRIPTION FORCE L.A Moment SFH1= DUE TO Live LoaD(50 %inY direction) 1.758 0.835 1.468
0.000
t
175980462.xls.ms_office
RCC Abutment
410 411
a c e f I j k
412 413 414 415 416 417 418 419 420 421
Top Of Foundation DESCRIPTION FORCE L.A Moment SFH1= DUE TO Live Load 1.339 8.091 10.832 SFV1= DUE TO Live Load 0.669 0.713 0.477 SHF3= DUE TO D.L OF SUPER STR. 0.350 4.256 1.491 SFV3= DUE TO D.L OF SUPER STR. 0.175 0.713 0.125 SFH5= DUE TO SELF WT. OF Abutment 2.135 2.128 4.543 SFV5= DUE TO SELF WT. OF Abutment 1.067 0.000 0.000 2 Due to Dynamic increment in Earth Pressure ( 0.5*(Ca-Ka)*w*h ) 3.28 4.72 = 15.48 5.12.6.1( c ) Sub Str. Total Ver Load = 1.243 t Ignoring the Seismic Effect of Live Total Horz Load = 5.764 t Load in Perpendicular Direction Total Moment = 21.642 t-m
422 423
Passive Earth Pressure
424 425
19.444 11.700
426 427
Passive Fill Line
428
8.314
429 430
18.006
431
1.0 0.5
432 433 434
14.586 11.130
435 436 437 438 439 440
Y
441
=
1.130
442 443 444
10.000
45
0
26.491
445
3.400
446 447
X
448
3.400 - X = 2.270
449 450 451
From first triangle
Y =
X
452 453 454
0.498
3.400 - X
=
X
X =
1.130 m
9
175980462.xls.ms_office 479
RCC Abutment
10
Calculation of Bending Moment at Bottom of Dirt Wall :-
480 481
Depth of Dirt wall from Formation Lev =
0.603 m
482
(i)
483 484 485 486 487 488 489
Active Earth Pressure at Bottom of Dirt Wall Height form Formation Level 0.603 m Pa = 0.500 X 0.251 X 1.800 Pa = 0.082 t/m Horizontal Component Of Active Earth Pressure Pah = 0.082 X Cos( 0.000 + Pah = 0.082 t/m ill act at 0.603
X (
0.000 /3=
0.603
) 0.201
)
2
m
490 491 492 493 494 495 496
(ii)
Due to surcharge at bottom of Dirt Wall Height = H = 0.603 m Length of Abutment = L = 7.000 m W idth Of Di stribution = B = 3.000 m Since H < CASE NO.= 1.000 will be used
(L-B)
497 498 499 500 501 502 503
P1 =
(S+V) X Ka x H (B+H) P1 = 0.975 t/m Horizontal Component P1h = 0.975 X COS( 0.000 W ILL ACTING AT 0.301 Met re
Will act at = H/2 m = 0.301 m
+
0.204
) =
0.955
t/m
0.402
m
0.096
t/m
504 505 506 507 508 509 510
P2 =
(S+V) X Ka X H^2 2XB X (B+H) P2 = 0.098 t/M(WIDTH), ACTING AT = 2H/3 Horizontal Component P2h = 0.098 X COS( 0.000 + 0.204 WILL ACT AT Y2 0.402 Metre
)
=
511 512
Total Moment at Base of Dirt Wall :-
513 514 515 516 517 518 519 520
Active Er Pr Surcharge
= =
0.082 0.955 0.096
x x x
0.201 = 0.301 = 0.402 = Total = Ultimate Moment 0.343 = 0.583 = 5.829
0.017 0.288 0.039 0.343 x t-m kN-m
t-m t-m t-m t-m 1.700
521 522
At First CHK LVL HORZ VERT
MOMEN
Ultimate Load
175980462.xls.ms_office
RCC Abutment
551
DESCRIPTION OF LOAD
552 553 554 555 556 557 558 559 560 561 562 563 564
SNO 1 2 3 4 a 5 a b 6 7 8
565 566 567 568 569 570
11
STRESSES AT 2nd Checking Level VERT MOMEN HORZ LOAD LOAD L.A T (T) (T) (M) (T-M) 5.839 0.047 0.274 44.628 0.047 2.098 12.857 4.721 60.692
Dead load of girder/slab&Track Live load on Girder/Slab Horizontal Force on girder/slab Activ e earth pressure PAH 5.223 Surcharge Load P1h 3.959 P2h 2.173 Self Wt. & back fill 18.157 Approach Slab 0.000 Moment Due to Weight of Return 0.000 Moment due to Passive TOTAL ( Without Seismic Effect ) 24.212 68.623 Due to Seismic Effect 2.308 -0.720 Considering increase of 33 % in permissible stress Combined Forces with seismic /1.33 =( For working Laod 19.940 51.055 Designed Value ( Max of Above two ) 24.212 68.623
Ultimate Load Fac 2.000 2.000 2.000
Puh
25.714
Mu 0.549 4.195 121.384 14.380
1.620
8.459
1.700
8.879
2.429 3.525
9.617 7.660 -0.733 0.000 0.000 0.000 88.067 6.042
1.700 1.700 1.400 2.000 2.000 1.700
6.730 3.694
0.000
1.600
70.758 88.067
Puv 11.678 89.255
16.349 13.022 25.419 -1.026 0.000 0.000 0.000 0.000 0.000 45.018 126.352 168.853 3.692 -1.152 9.667 48.710 125.200 178.520 48.710 126.352 178.520 Pu Vu Mu
571 572
Pmax
573 574
=
68.623
=
1.520
= =
68.623 1.520
+
88.067 0.385
-
88.067 0.385
2
=
273.85 t/m
=
-183.56 t/m
575
Pmin
576 577 578 579 580
DESCRIPTION OF LOAD
581 582 583 584 585 586 587 588 589 590 591 592 593
SNO 1 2 3 4 a 5 a b 6 7 8
Dead load of girder/slab&Track Live load on Girder/Slab Horizontal Force on girder/slab Activ e earth pressure PAH Surcharge Load P1h P2h Self Wt. & back fill Approach Slab Moment Due to Weight of Return
STRESSES AT Top OF FOUNDATION HORZ VERT MOMEN LOAD LOAD L.A T (T) (T) (M) (T-M) 5.839 0.047 0.274 44.628 0.047 2.098 12.857 8.841 113.670
Ultimate Load Fac 2.000 2.000 2.000
Puh
Puv 11.678 89.255
25.714
Mu 0.549 4.195 227.340
19.735
3.148
62.125
1.700
33.549
105.613
7.695 2.173
4.722 8.111
36.337 17.624 -0.733 0.000 0.000
1.700 1.700 1.400 2.000 2.000
13.082 3.694
61.773 29.960 -1.026 0.000 0.000
35.581 0.000 0.000
0.000
49.814 0.000 0.000
175980462.xls.ms_office 624
RCC Abutment
12
As per Cl 15-4-2-2-1
625 626
taking it as Singly reinforced section
627 628
Checking for effective depth =
d =
Mu 0.15 x b x fck
629 630 631
d
=
Ast =
.5 fck
632
0.15 x
536375751 35 x 1000
=
319.635
mm
633 634
1 -
4.6 Mu
1-
f y
635
f ck bd
bd
2
636
638
Here :f ck =
639
f y
637
35 N /mm2 415 N /mm2 1000 mm 1457 mm
=
b = d =
640 641
Mu =
536.38 KN - m
1029 mm2 Dia Of Main Bar = # = Dia Of Bar on Comp Side = # Ast =
32 20
=
642 643
Spacing of Main Bar required =
804
x 1029
1000
mm x x
< 3d = 100 1457 OK
4371
644
=
781
645 646 647
So Provide Spacing = % of Steel Provided = p =
180 4466 1000 >
648
=
649
0.307
%
0.200
O.K
650 651
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C
652 653
Leaver Arm = z
=
1.000
-
1.1 fy Ast fck b d
1457
=
1399
654
d
655 656
z =
1-
657
2038628 50995000
0.95 d =
1384
658 659
final z
=
1384 mm
660 661
Mur =
0.87 * fy *As * z
=
662
0.87 *
663
415
*
4466 *
1384 =
664 665 666 667
=
2232 kN-m
>
536 kN-m
OK
2231760644
N-mm
mm
mm mm
175980462.xls.ms_office
RCC Abutment 0.27
100 As
Ym
bd
vc =
0.270
x
vc =
1.25 0.476
690 691
13
Ultimate Shear Resistance of Concrete = vc =
1/3
fck
x
1/3
( Cl 15-4-3-2-1)
692 693 694
As =
4466
Ym =
mm
1.25
695
446578
1/3
35
x
1/3
1457000
696 697 698
s * vc v
= =
1 * 0.272 N/mm2
0.476
=
0.364
2
N/mm
699 700
Dia of Shear strippups
=
10 mm having nos of leg in 1 m =
4
701 702
Asv =
2
314 mm
703 704
As per Cl 15.4.3.2 ( Table - 14 )
705 706
As
v
<
s vc
707 708
Sv =
0.87 * fy * Asv / 0.4 b
=
/
113370
709 710
It should not be more than 0.75 * d or 450 mm
As per Clause 15.4.3.2.4 of CBC
711 712
So provide Sv
=
180 mm
713 714 715
Checking at 2nd Level Mu = 1785 kN-m
716 717
As per Cl 15-4-2-2-1
718 719
taking it as Singly reinforced section
720 721
Checking for effective depth =
d =
Mu 0.15 x b x fck
722 723 724 725
d
=
Ast =
.5 fck
0.15 x
1785197061 35 x 1000
=
583
mm
726 727
1 -
f y
728
1-
4.6 Mu f ck bd
2
bd
729
731
Here :f ck =
732
f y
730
=
35 N /mm2 415 N /mm2
Mu = Ast =
1785 KN - m 3495
mm
2
400
=
283
175980462.xls.ms_office 760
RCC Abutment
14
Steel on Other side Parallel to Main Steel
761 762
Area of Steel Required = 0.12 % =
0.120
X
1000 100
= Required Spacing =
1748 314
Provide Spacing
180 180
mm x 1748 mm mm
763 764 765
768
=
1457
2
766 767
X
1000
769 770
Checking for Shear Stress
771 772 773 774
Ultimate Shear = Vu = b = d =
487 kN 1000 mm 1457 mm
775 776
Shear stress =
v =
487 * 1000 1000* 1457
777
=
0.334
2
<
N/mm
0.75 fck =
4.437
OK
778 779
Depth factor =
s =
500 d
780
1/4
or 0.7 whichever is max =
0.765
781 782
Ultimate Shear Resistance of Concrete = vc =
0.270
100 As
Ym
bd
vc =
0.270
x
vc =
1.250 0.476
783
1/3
fck
x
1/3
( Cl 15-4-3-2-1)
784 785 786
As =
4466
Ym =
mm
1
787
446578
1/3
35
x
1457000
788 789 790
s * vc v
= =
0.765 * 0.334 N/mm2
0.476
=
0.364
2
N/mm
791 792
Dia of Shear strippups
=
10 mm having nos of leg in 1 m =
4
793 794
Asv =
2
314 mm
795 796
As per Cl 15.4.3.2 ( Table - 14 )
797 798
As
v
<
s vc
799 800
Sv =
0.87 * fy * Asv / 0.4 b
801 802 803
It should not be more than 0.75 * d or 450 mm
=
113370
/
400
=
283
175980462.xls.ms_office 831 832
RCC Abutment
So Provide Spacing = % of Steel Provided = p =
833
=
834
0.613
%
90 8932 1000 >
mm x x 0.200
15
< 3d = 100 1457 OK
4371
O.K
835 836
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C
837 838
Leaver Arm = z
839
1
-
1457
=
=
1.1 fy Ast fck b d
d
840 841
z =
4077255 50995000
1-
842
1341
0.95 d =
1384
843 844
final z
=
1341 mm
Mu =
0.87 * fy *As * z
845 846
=
847
0.87 *
848
415
*
8932 *
1341 =
<
4391 kN-m
4322784031
N-mm
849 850
=
4323 kN-m
Revise
851 852 853
Steel on Other side Parallel to Main Steel
854 855
Area of Steel Required = 0.12 % =
0.12
X
1000 100
= Required Spacing =
1748 314
Provide Spacing
180 180
mm x 1748 mm mm
856 857 858 859 860 861
=
X
1457
2
1000
862 863
Checking for Shear Stress
864 865 866 867
Ultimate Shear = Vu = b = d =
853 kN 1000 mm 1457 mm
868 869
Shear stress =
v =
870
853 * 1000 1000* 1457
=
0.585
2
<
N/mm
0.75 fck =
4.437
OK
871 872 873
Depth factor =
s =
500 d
1/4
or 0.7 whichever is max =
1
874 875
Ultimate Shear Resistance of Concrete = vc =
0 270
100 As
1/3
fck
1/3
( Cl 15-4-3-2-1)
175980462.xls.ms_office 899 900
RCC Abutment
16
Checking at Bottom of Dirt Wall Mu = 6 kN-m
901 902
As per Cl 15-4-2-2-1
903 904
taking it as Singly reinforced section
905 906
Checking for effective depth =
d =
Mu 0.15 x b x fck
907 908 909 910
d
=
0.15 x
5829149 35 x 1000
=
33
mm
911 912
Provide Over all Depth =
300 mm
Hence Effective Depth =
300
913 914
-
30 =
270 mm
915 916
Ast =
.5 fck
1 -
1-
f y
917
4.6 Mu f ck bd
bd
2
918
920
Here :f ck =
921
f y
919
922 923
=
b = d =
35 N /mm2 415 N /mm2 1000 mm 270 mm
Mu =
6 KN - m
Ast =
2
60
mm
Dia Of Main Bar = # = Dia Of Bar on Comp Side = #
16 8
=
924 925 926
201
Spacing of Main Bar required =
x
1000
=
60
927 928 929
So Provide Spacing = % of Steel Provided = p =
810
O.K
0
< 3d = 100 270 OK
0
X
1000 100
X
= Required Spacing =
324 50
Provide Spacing
155 150
mm x 324 mm mm
930
=
931
1
%
130 1546 1000 >
mm x x
932 933
Distribution Steel
934 935
Area of Steel Required = 0.12 % =
936 937 938 939 940 941
=
2
1000
270
3350
mm
mm mm
175980462.xls.ms_office
Pile and Pile Cap
17
Design Of Pile & Pile Cap A 1 Dia Of Pile 2 Depth of Pile Below Cap ( Based on Soil Reprt ) 3 Load Carrying Capacity of Single Pile as per Soil Report
B
C
D
1.200
m
25
m
2250
kN
4 Total nos of Pile in a Group
9
5 Scour Below Bottom of Pile Cap ( L1 )
0
m
1 Width of Pile Cap ( Across the Track )
8.5
m
2 Length of Pile Cap ( Along the Track )
8.5
m
3 Thickness of Pile Cap
1.8
m
4 C/C of Pile along the Track
3.5
m
5 C/C of Pile across the Track
3.5
m
PILE CAP
Material 1 Grade of Concrete
35
2 Grade of Steel
415
3 Clear Cover to Nominal Reinforcement
60
External Load
Ultimate Load
mm
Actual Load
1 Vertical Load
Pu =
12829.754
P=
7228.026 kN
2 Moment about Major Axis
Mux =
36886.003
Mx=
19437.21 kN-m
3 Moment about Minor Axis
Muy =
0.000
My=
4 Horz. Force Along Track
Vuy =
7162.0447
Vy=
0.000
kN-m
3566.661 kN
175980462.xls.ms_office
Pile and Pile Cap
8500
18
x
y
y
0 0 5 8
1520
0 0 5 3
0 9 9
#REF!
750
3500
x
r1 Checking of Load Carrying Capacity of Pile With Actual Load Load on Each Pile due to P =
10479.3
=
1164.4
kN
9
Load on Each Pile due to M = ( on Outer Pile )
Load on Each Pile due to Mu = ( on Outer Pile ) Max Load on Pile =
1164.36
M = Spacing of outer pile x Nos of Pile in a row
19437.21 7 +
x
=
925.6
3
925.6
= <
2089.9 kN 2250 Actual Capacity
OK
kN
175980462.xls.ms_office
Pile and Pile Cap
19
Calculation of Load on Pile With Ultimate Load Load on Each Pile due to P =
12829.8
=
1425.5
kN
9
Load on Each Pile due to M =
Mu Spacing of pile x Nos of Pile in a row
36886.0
Load due to Mx = 7
x
Max Load on Pile =
1425.5
+
Min Load on Pile =
1425.5
= 3
-
1756.48
=
3182.00 kN
1756.48
=
-330.95 kN
1520
900=D/2 3320
1840
3182.0 -330.96
1756.476
kN
175980462.xls.ms_office
Pile and Pile Cap
20
RCC Design Of Pile Cap f CK =
2
35
N /mm
( For Depth Checking considering 1 m width ) Max of Both Direction
17564.66
Muy =
/
Ultimate Bending Moment = Mu ( Per meter )
Minimum Depth Required =
8.5
=
2066.43
KN - m
2066.43
sqrt ( Mu / 0.15 x b x fck )
=
Minimum Depth Required =
2066.43
x
x
1000
0.15 Minimum Depth Required =
627
mm
=
712
mm
So Provide Over all Depth = D =
1800
mm
So Effective Depth Provided = d =
1715
mm
Over all depth required =
.5 f ck
1 -
f y
f y
= =
4.6 Mu f ck bd
Here :f ck
1-
35 N /mm2 415 N /mm2
2
10
6
x
( Should Not be Less than 1.5*pile Dia)
Calculation Area of Steel Required ( For Under Reinforced Section ) Ast =
kN-m/m width
bd
35
175980462.xls.ms_office
Pile and Pile Cap
21
Reinforcement Parallel to Y-Y ( For Mux) Dia Of Bar
= #
25
=
So Provide Spacing =
140
% of Steel Provided = p =
mm
mm
< 3d =
O.K
0.20%
O.K
Checking for Shear Stress Ultimate Shear = Vu =
9546.0 kN
b
=
8500 mm
d
=
1715 mm
Shear stress = v =
9546.0 * 1000 8500 x
Depth factor =
=
0.6548457
2
1/4
500
100*As/ b d = Ym =
fck =
OK
or 0.7 whichever is Max =
d Ultimate Shear Resistance of Concrete = vc =
0.75
4.4370598
1715
s =
<
N/mm
0.735
0.27
100 As
Ym
bd
1/3
x
1/3
fck
( Cl 15-4-3-2-1)
0.204 1.25
vc =
0.27
x
0.20
0.7348124
*
1/3
x
35
1/3
1.25 vc =
s * vc
0.416
=
0.416 2
N/mm
=
0.3056004
N/mm
2
175980462.xls.ms_office
Pile and Pile Cap
Assumed Dia of Bar =
22
16 mm
Area of Steel Required = 0.12 % =
0.12
X
1000
1715
100
( As per Cl 26.5.2 IS 456) =
X
2
2058
mm
Required Spacing =
200.96
x
1000
2058.00 = Provide Spacing
=
Summary Of Reinforcement :--
195
mm
140
mm
(For 9- Piles)
1-
Bottom Main Steel in Long Span Direction =
25 #
@
140
mm c/c
2-
Bottom Dist. Steel in Short Span Direction =
25 #
@
140
mm c/c
3-
Top Temp. Steel
16 #
@
140
mm c/c
4-
Shear Reinforcement
= 3 legged
12
R.C.C Design of Pile :Max ultimate Load Dia of Stem
=
3182.00 N
=
1200 mm
Calculation of Depth of Fixity as Per IS Code 2911 ( Part 1/Sec -2) As per Appendix " C" amendments 3 Type Of Soil
=
2
hence
Medium Sand
(Loose Sand = 1 , Medium Sand = 2 , Dense Sand = 3)
# Stirrups @
140 mm
175980462.xls.ms_office
Hence Lf
Pile and Pile Cap
=
2
x
359.53
Now Embaded Length = Le =
25
23
=
-
719.06 cm
7.19
=
Lf =
Depth of Scour =
L1 =
14.38 OK 7.191 m
0 m
total Leaver arm = Lf + L1 =
7.191
+
Ultimate Horz. Force on Each Pile =
0.000 3566.7
=
/
=
7.191 m 9
396.30 kN
Check for Deflection ( As per App C )
Assuming Fixed Head Pile
Y (cm) =
3
Q (L1 + Lf )
=
39629.57
12 E I
12 x
=
As per Clause C-2.1 Hence Moment =Mu
7.19 m
17.81 m
> 4T Length of Fixity =
=
x 310000 x
719.1
3
10173600
0.3893 cm
For Fixed Head Pile 396.30
x
7.19 2
Assuming effective Cover d' =
60 mm
=
1424.80 kN-m
175980462.xls.ms_office
Dia of Bar
Pile and Pile Cap
=
24 2
=
2574.8 mm
Say
16 Nos
16 mm
Nos of Bar Required
=
12.8125
16 bar ( 2 extra bar between General spacing)
So Provide
As per Cl 5-11-1 of IS-2911 (Part I/ Sec 2)
Minimum % of Reinforcement =0.4 % of Gross Area
Asc min
=
4521.6 mm
So Provide main Reinforcement Dia of Main Bar
2
4521.6 mm
= =
Nos of Bar Required
20 mm =
Nos of Bar Provided
=
Provided Area of Steel
=
2
14.4 17 5338 mm
2
Check for Min Spacing of Bar As Per Cl 5-11-3 of IS-2911 Dia of Core ( Effective Dia )
=
1100 mm
Periphery of Core
=
3454 mm
Spacing Between Bars
=
(Assuming Clear cover=40mm)
203.17647 mm
>
Horizontal Ties Dia
of Ties
Dia of Main Reinforcement =
8 20
Spacing of Lateral Ties Min of the fallowing = a) Least Lateral Dimension =
1200
mm
100 mm
Okay
175980462.xls.ms_office
Wing Wall
25
Wing Wall Bridge No Standard of Loading
8
H.M.Loading
Level (m) Top of Wing Wall Formation Level 19.444 Top of Foundation R.L of Bed Level 11.100 Bottom of Foundation Deepest Scour Level 9.100 1 Height of Wall From Top of Foundation 2 Proposed Top Width 3 Back Batter (Equivalent for existing ) (1H:?V) (1000 = For Vertical Face ) 4 Intermediate Front Batter (1H:?V) ( 1000 = For Vertical face ) 5 Second Front Batter (1H:?V) ( 1000 = for Vertical face ) 6 Sloping Thickness of Toe 7 Length of Toe Projection. 8 End Thickness of Foundation 9 Heel Projection 10 Angle of Friction of Wall with Soil (d) 11.67 Deg 11 Height of Second Batter (Intermediate Level) above Top of Foundation 12 Front Offset in Wall 13 Passive Height from Bottom of Foundation 14 Coefficient of Friction ( m) 15 Distance form C/L of track to Back Face of Wall 16 Width of Sleeper 17 Depth of Ballast Cushion 18 Depth From Formation Level to Top of Wall 19 Live Load Surcharge 20 Dead Load Surcharge 21 Angle of Repose of Soil (f) 35.00 Deg 22 Angle of Surcharge ( i) 23 Cohesion (c) 24 Angle of internal friction of Soil (f) 11.67 Deg 25 Density of Front Soil 26 Density of Back Fill Seismic Parameter 27 a = b = Zone = III 0.04 1.5 28 Density of Masonry 29 Density of Submerged Soil 30 F.O.S. for Passive Earth Pressure 31 Front Delta 32 Angle of Back Batter (a) 33 Safe Bearing Capacity 34 Grade of Concrete fck = 35 Grade of Steel 415 CHECK Max Min 2 14.9 7.5 Foundation Pressure t/m Stability Check
19.444 11.700 10.192 8.344 0.450 12 1000 1000 0.90 4.800 0.500 4.800 0.204 4.172 0.000 2.600 0.500 3.500 2.750 0.300 0.000 17.000 6.200 0.611 6.000 1.500 0.204 1.000 1.800 i
= 2.500 1.000 3 0.210 0.083 15.0
m m
m m m rad m m m m m m m 2 t/m 2 t/m rad rad 2 t/m rad 2 t/m 2 t/m 1 2 t/m 2 t/m rad rad 2 t/m
OK OK
175980462.xls.ms_office
Wing Wall
26
450 TOP
19.444
Formation Level 20 # @ 200
16 # @ 200
19.444
BACK SIDE 2 7 1 4
4 4 7 7
Curtailment Section 16 # @ 100 Bed Level
11.700
0 0 2 1
16 # @ 100
2 7 1 4
25 # @ 100
32 # @ 100
0 0 9
TOF =
10.500
BOF =
9.100
0 0 4 1
0 0 5
20 # @ 100 32 # @ 100
4800
1145
4800
175980462.xls.ms_office
Wing Wall
27
DETAIL CALCULATION 1.0
ACTIVE EARTH PRESSURE For Calculating the Active Earth Pressure COULOMB's theory is followed. Pa
0.5Kawh h
=
Where :Ka = Coeff. of Active Earth Pressure h = Height of Soil w = Unit Weight of Soil 2
Ka =
Cos (f - a) Sin(f - d)Sin(f - i) 1 + Cos(a+ d)Cos (a - i)
2
Cos (a)Cos(a + d)
5.7.1
Sub Str
2
Following values are taken for calculating the active earth pressure. Level Int. Chk & TOF a= Slope of Batter with Vert. 0.083 f= Coff. of internal friction of Soil 0.611 d= Angle of friction bet. Wall & earth 0.204 i= Angle of slope of fill with Horz. 0.000 Ka = 0.284
BOF rad rad rad rad
(Effect of sloping Surcharge has been taken as per CL 5.8.4 of Sub Str. Code, So " i " is taken = 0 for calc ulation of K a )
Horizontal Component Of Active Earth Pressure Pah Pa Cos(a + d) =
i
Acting at Y1= (h/3) above s ection considered a
Vertical Component Of Active Earth Pressure Pav Pa Sin(a + d) = Pah
Acting at X1 = Y1Cot (90-a) from face of Wall a d
Y1 =h/3
Pa
f
Pav 1.1
At Intermediate Checking Level Height from Formation Level, h Pa =
0.5 x
0.284 x
FL =
1.800 x
h3 =
4.071 m 4.071 x 4.07083
=
0.000 m
4.238 t/m (Width) Int. Lvl
Horizontal Component Pah = 4.238 x Cos( 0.083+
0.204 )
Will act at Y1
= 4.071 / 3
=
4.065 t/m (Width) 1.357 m
TOF
175980462.xls.ms_office 2.0
Wing Wall
28
EARTH PRESSURE DUE TO SURCHARGE As per Cl 5.8.3 of Sub Str. Code Earth pressure due to surcharge is assumed to be dispersed below formation level at an angle of 45°. P1 =
(S + V) x h1 x Ka (B + 2D)
Will act at h1/2
Live Load Surcharge per m, S= Dead Load Surcharge per m, V = Width of Distribution, B = 2.1
2
17.000 t/m 2 6.200 t/m 2.750 m
At Interm ediate Chec king Lev el
3.500 1.777
0.348
2.750 B
Formation Level
D
1.777
0
2 7 1 . 4
45
h1
2.695 Checking Level
Height, h1 =
2.695 m 1.777 m
Depth of Dispersion, D = P1 = 2.2
17.000+
6.200 2.695 x 2.750+ 3.555
0.284
=
Will act at h1/2
2.817 t/m
1.347 m
At Top of Foundation
3.500 1.430
0.695
2.750 B
Formation Level
D
1.430
0
4 4 3 . 8
45
h1
7.214
175980462.xls.ms_office 3.0
Wing Wall
29
PASSIVE EARTH PRESSURE For Calculation Of Passive Earth Pressure On Substructure Coulomb Theory Is Used Pp
2
0.5 Kp w h
=
2
Kp=
Cos (f+ a) Sin(f + d) Sin(f + i) 1Cos(a- d) Cos (a - i)
2
Cos a Cos(a - d) 0.204 rad 1.936
f =
Kp= Pph
=
0.210 rad
d=
Pp Cos(d - a) Acting at (h/3) above section.
2
a =
Ppv
=
i= 0.000 rad Factor of Safety for Passive =
0.000 rad 3
Pp Sin(d - a) Acting at X=Y Cot(90 - a)
Considering only Horizontal component because Vertical Component will be ineffective. 3.1
At Top of Foundation Passive Height = Bed Lvl or Scour Lvl TOF = 2 Pp = 0.5 x 1.936 x 1.000 x 0.000 Safe Passive Pressure = 0.000 / Ph = 0.000 x Cos( 0.2100.000 ) Resisting Moment = 0.000 x 0.000 =
3.2
4.0
0.000 m 0.000 t/m
11 .10 0 =
3 = 0.000 t/m = 0.000 t/m Will act @ h/3 = 0.000 t-m
At Bottom of Foundation Passive Height = Bed Lvl or Scour Lvl BOF = 2 Pp = 0.5 x 1.936 x 1.000 x 1.092 Safe Passive Pressure = 1.154 /3 Ph = 0.385 x Cos( 0.2100.000 ) Resisting Moment = 0.376 x 0.364 =
10 .1 92 -
=
10.192-
=
0.000 m
1.092 m 1.154 t/m
9.100 =
= 0.385 t/m = 0.376 t/m 0.137 t-m
Will act @ h/3 =
0.364 m
SELF WEIGHT 4.1
At Interm ediate Chec king Level FL 0.000
5
Top of Wall
0.450 Back Fill
4
0.000 1
Passive 4.172 6
3 A
2
0.348 No
6
0.000
0.000 Shape
Horz.
Vert.
Density
Weight
L.A.
Moment L.A.
Moment
175980462.xls.ms_office
4.2
Wing Wall
At Top of Foundation No.
W1 W2 l W3 l i F e W4 i v t c W5 A W9 W11 W12 i v l s i l W13 a s F P e W14
Shape
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5 x 1.0 x 0.5 x
Horz. (m) 0.450 x 0.000 x 0.000 x 0.000 x 0.695 x 0.695 x 0.695 x 0.000 x 0.000 x 0.001 x
Vert. (m) 8.344 x 4.172 x 4.172 x 4.172 x 8.344 x 8.344 x
-0.20 x 0.000 x 0.000 x 1.200 x
CG of Total Mass from B = Moment/Weight = CG of Total Mass above Top of Foundation = 4.3
Density 3
(t/m )
Weight W(t)
2.500 = 9.387 2.500 = 0.000 2.500 = 0.000 2.500 = 0.000 2.500 = 7.252 1.800 = 5.222 1.800 = -0.127 1.000 = 0.000 1.000 = 0.000 1.000 = 0.001 Sum 21.735 WX /W = WY /W =
L.A. from Moment L.A. Moment B (m) WX above B W Y
(tm) (m) (tm) 8.639 4.172 39.163 0.000 5.563 0.000 0.000 2.086 0.000 0.000 1.391 0.000 3.362 2.781 20.171 1.210 5.563 29.046 -0.029 8.277 -1.048 0.000 0.000 0.004 13.186 87.332 13.186 /21.735 = 0.607 m 87.332 /21.735 = 4.018 m 0.920 1.145 1.145 1.145 0.464 0.232 0.232 1.145 1.145 5.945
At Bottom of Foundation No.
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16
Shape
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x
Horz. (m) 0.450 x 0.000 x 0.000 x 0.000 x 0.695 x 5.945 x 4.800 x 4.800 x 0.695 x 4.800 x 5.495 x 0.000 x 0.000 x 0.001 x 4.800 x 4.800 x
Vert. (m)
Density 3
(t/m )
2.500 = 2.500 = 2.500 = 2.500 = l 2.500 = l i F e 2.500 = i v t c 2.500 = A 2.500 = 1.800 = 1.800 = 1.800 = 1.000 = l l i 1.000 = F 1.000 = v e i s 1.000 = a s P 1.000 = Sum C.G. of mass from C = Moment/Weight = WX C.G. of Total Mass above Bott of Foundation = WY 5.0
30
8.344 x 4.172 x 4.172 x 4.172 x 8.344 x 1.400 x 0.900 x 0.500 x 8.344 x 8.344 x -1.599 x 0.000 x 0.000 x 1.200 x 1.200 x 0.900 x
Weight W(t)
L.A. from Moment L.A. Moment C (m) WX above C W Y
(tm) (m) 9.387 5.720 53.697 5.572 0.000 5.945 0.000 6.963 0.000 5.945 0.000 3.486 0.000 5.945 0.000 2.791 7.252 5.264 38.173 4.181 20.809 2.973 61.857 0.700 5.400 7.545 40.745 0.800 6.000 8.345 50.072 0.250 5.222 5.032 26.274 6.963 72.092 2.400 173.021 5.572 -15.818 1.832 -28.976 9.211 0.000 5.945 0.000 0.000 5.945 0.000 0.001 10.745 0.008 5.760 8.345 48.069 2.160 9.145 19.754 118.264 482.694 /W = 482.694 /118.264 = /W = 395.367 /118.264 =
(tm) 52.304 0.000 0.000 0.000 30.324 14.566 4.320 1.500 36.357 401.698 -145.70
395.367 4.081 m 3.343 m
SEISMIC FORCE Earth Pressure Due to Seismic Effect bx Ix ah = ao ah =
0.0 x
1.0 x
1.500 =
5.12.6.1
0.06
av =
0.06 / 2 =
0.03
Sub Str
175980462.xls.ms_office
5.2
Wing Wall
At Top of Foundation DESCRIPTION SFH 1 to 5 = DUE TO SELF WT. OF Wall SFV 1 to 5 = DUE TO SELF WT. OF Wall 2 Increment in Earth Pressure [0.5 gh (Ca-Ka)] Total Ver Load = 0.652 t Total Horz Load = 4.143 t Total Moment = 17.084 t-m
5.3
FORCE L.A. Moment 1.304 4.018 5.240 0.652 0.000 0.000 2.839 4.172 11.844
At Bottom of Foundation DESCRIPTION SFH 1 to 5 = DUE TO SELF WT. OF Wall SFV 1 to 5 = DUE TO SELF WT. OF Wall 2 Increment in Earth Pressure [0.5 gh (Ca-Ka)] Total Ver Load = 3.310 t Total Horz Load = 10.984 t Total Moment = 44.699 t-m
6.0
31
FORCE L.A. Moment 6.621 3.343 22.133 3.310 0.000 0.000 4.363 5.172 22.565
STRESS CALCULATION 6.1
At Inter mediate Chec king Level
S.No. 1
LOAD L.A. (m) Moment VERT HORZ. (t-m)
DESCRIPTION OF LOAD Active Earth Pressure Horizontal Component P ah
4.065
Vertical Component Pav
1.199
2 Earth Pressure due to Surcharge P h 3 Self Weight & Back Fill TOTAL Due to seismic Effect Combined Load with Seismic
2.817 7.780 8.980 -0.233 8.746
Fac
Ultimate Load Puh Mu
1.357
5.515
1.70
6.90968
0.113
0.136
1.70
0
1.347
3.796 3.256 12.703 2.429 15.132
1.70 1.40
4.78975 0 11.699
6.91 Pu Width of the section = 798 mm Cover = 70 mm ( Effective ) Effective Depthj = 798 Checking at first Level Mu = 230.5 kN-m
Checking for effective depth =
d
=
0.15 x
70
=
728 mm
d =
230471262 35 x 1000
Mu 0.15 x b x fck =
209.5
mm
9.38 0.23 6.45 4.56 20.618 2.429 23.05 Mu
175980462.xls.ms_office
Wing Wall
32
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 873.2 200.96
= Required Spacing =
Provide Spacing
230 200
=
X
1000
X
727.7
<
0.75 fck =
2
mm x 873 mm mm
1000
Checking for Shear Stress
Ultimate Shear = Vu = b = d = Shear stress =
v =
Depth factor =
69.1 kN 1000 mm 728 mm 69.1 * 1000 1000* 728
s =
500 d
1/4
=
or 0.7 whichever is maximum =
Ultimate Shear Resistance of Concrete = vc = As =
1570
Ym =
1.25
s * vc v
= =
mm
0.91046 * 0.09496 N/mm2
0.423
0.09496 N/mm2
0.27
100 As
Ym
bd
vc =
0.27
vc =
1.25 0.423
=
x
1/3
4.43706
OK
0.91046
fck
x
1/3
1/3
157000
( Cl 15-4-3-2-1)
x
35
1/3
727667
0.38557 N/mm2
Hence NO Shear Reinforcement Required
6.2
At Top of Foundation
S.No. 1
DESCRIPTION OF LOAD
LOAD L.A. (m) Moment VERT HORZ. (t-m)
Active Earth Pressure Horizontal Component Pah Vertical Component Pav
2 Earth Pressure due to Surcharge Ph 3 Passive Earth Pressure 4 Self Weight & Back Fill TOTAL Due to seismic Effect
16.258 4.798 8.478 0.000 21.735 26.533 0 652
Fac
Ultimate Load Puh Mu
2.714
44.123
1.70
27.6387
75.01
0.226
1.085
1.70
0
1.84
3.607 0.000 0.607
30.582 0.000 13.186 88.976 17 084
1.70 1.70 1.40
14.413 51.99 0 0.00 0 18.46 42.052 128.843 17 084
175980462.xls.ms_office
Wing Wall
33
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C Leaver Arm = z
z =
final z
=
2239703 37636667
1=
1011 mm
Mur =
=
415
1791.49 kN-m
-
1.1 fy Ast fck b d
1075
=
1011
d
0.95 d =
1022
( Min of above )
0.87 * fy *As * z 0.87 *
1
*
= 4906.25 *
>
1011 =
1459 kN-m
1791492472
N-mm
OK
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 1290.4 200.96
= Required Spacing =
Provide Spacing
156 100
=
X
1000
X
1075.3
<
0.75 fck =
2
mm x 1290 mm mm
1000
Checking for Shear Stress
Ultimate Shear = Vu = b = d = Shear stress =
Depth factor =
v =
s =
276.4 kN 1000 mm 1075 mm 276.4 * 1000 1000* 1075 500 d
1/4
=
or 0.7 whichever is maximum =
Ultimate Shear Resistance of Concrete = vc = As =
4906.25 mm
Ym =
s * vc v
0.82577 * 0.25702 N/mm2
0.543
0.27
100 As
Ym
bd
vc =
0.27
vc =
1.25 0.543
1.25
= =
0.25702 N/mm2
=
x
0.44875 N/mm2
1/3
4.43706
OK
0.82577
fck
x
490625 1075333
1/3
1/3
( Cl 15-4-3-2-1)
x
35
1/3
175980462.xls.ms_office
Wing Wall
34
Design of Toe Slab Max Projection of Toe Slab
=
4.800
m
On safer side Taking Max Foundation Pressure as UDL ( Though it will be Trapezoidal ) Max Pressure =
149.399 kN/m 149.399
Max Moment = Ultimate Moment Mu
=
=
x 2
4.800
1.700
x
d
=
Ast =
.5 fck
=
b = d =
1721.08
=
1721.08
=
2925.84 kN-m
0.15 x
d =
Mu 0.15 x b x fck
2925837307 35 x 1000
1 -
=
4.6 Mu
1-
2
f y
f y
2
2925.8 kN-m
Checking for effective depth =
Here :f ck =
( Taking Unit Width in Consideration )
f ck bd
35 N /mm2 415 N /mm2 1000 mm 1330 mm
Mu =
bd
2925.8 KN - m
6469.1 mm2 Dia Of Main Bar = # = Dia Of Bar on Comp Side =
So Provide Spacing = % of Steel Provided = p = 0.604
mm
Ast =
Spacing of Main Bar required =
=
746.5
%
100 8038.4 1000 >
#
803.84
x 6469.1
1000
mm x x
< 3d = 100 1330 OK
3990
O.K
X
1000
X
0.20%
32 16
=
=
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % = = Required Spacing =
Provide Spacing
=
0.12 100 1596 200.96 126 100
2
mm x 1596 mm mm
1000
1330.0
124
mm
mm mm
175980462.xls.ms_office
Wing Wall
Spacing of Main Bar required =
So Provide Spacing = % of Steel Provided = p = =
0.416
%
35
803.84
x 6899.6
1000
mm x x
< 3d = 100 1930 OK
5790
O.K
X
1000
X
100 8038.4 1000 >
0.20%
=
117
mm
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
7.0
= Required Spacing =
0.12 100 2316 314
Provide Spacing
136 100
=
1930.0
2
mm x 2316 mm mm
1000
STABILITY CALCULATION 7.1
Against Overturning (Sub Structure Code Clause 5.10.1.1 and 6.8 ) Mo =
Moment due to [E.P. (Horz. Component) + Surcharge (Horz. Component)]
Without seismic,
Mo =
54.673 +
135.790 =
190.463 t-m
With seismic,
Mo =
54.673 +
135.790 +
44.699 =
235.162 t-m
Ms =
Moment due to [E.P. (Vert. Component) + Surcharge (Vert. Component)] + Moment due to self Wt. & Earth Fill (Calculated in Table 6.3 ) Without seismic, Ms = 846.224 t-m With seismic, Description Without Seismic With Seismic 7.2
Ms =
(Calculated in Table 6.3 )
846.224 t-m
Restoring moment (M s) 846.224 846.224
Overturning moment (M o) 190.463 235.162
Factor of Safety (Ms /M o) 4.4 3.6
Against Sliding (Sub Structure Code Clause 6.8 ) Total Horz. Force, H = Total Vert. Force, W = Coff of Friction, m = Base Width = Cohesion, c = Passive Force, Pp = Total Resisting Force, R =
18.756
+
25.515
123.799 0.500 10.745 m 2 1.500 t/m 0.376 (Ref. 9.2 ) m W+Bc+P p
-
0.376 =
43.895 t
FOS (Reqd.) 2.0 1.5
175980462.xls.ms_office
Return Wall
36
Return Wall Bridge No
8
Standard of Loading Level (m) Top of Wing Wall Formation Level 13.200 Top of Foundation R.L of Bed Level 11.100 Bottom of Foundation Deepest Scour Level 9.100 1 Height of Wall From Top of Foundation 2 Proposed Top Width 3 Back Batter (Equivalent for existing ) (1H:?V) (1000 = For Vertical Face ) 4 Intermediate Front Batter (1H:?V) ( 1000 = For Vertical face ) 5 Second Front Batter (1H:?V) ( 1000 = for Vertical face ) 6 Sloping Thickness of Toe 7 Length of Toe Projection. 8 End Thickness of Foundation 9 Heel Projection 10 Angle of Friction of Wall with Soil (d) 11.67 Deg 11 Height of Second Batter (Intermediate Level) above Top of Foundation 12 Front Offset in Wall 13 Passive Height from Bottom of Foundation 14 Coefficient of Friction ( m) 15 Distance form C/L of track to Back Face of Wall 16 Width of Sleeper 17 Depth of Ballast Cushion 18 Depth From Formation Level to Top of Wall 19 Live Load Surcharge 20 Dead Load Surcharge 21 Angle of Repose of Soil (f) 35.00 Deg 22 Angle of Surcharge (i) 23 Cohesion (c) 24 Angle of internal friction of Soil (f) 11.67 Deg 25 Density of Front Soil 26 Density of Back Fill Seismic Parameter 27 a = b = Zone = III 0.04 1.5 28 Density of Masonry 29 Density of Submerged Soil 30 F.O.S. for Passive Earth Pressure 31 Front Delta 32 Angle of Back Batter (a) 33 Safe Bearing Capacity 34 Grade of Concrete fck = 35 Grade of Steel 415 CHECK Max Min 2 8.4 1.6 Foundation Pressure t/m Stability Check
19.444 11.700 10.192 2.100 0.450 12 1000 1000 0.20 1.100 0.500 1.000 0.204 1.050 0.000 2.600 0.500 16.000 2.750 0.300 6.244 17.000 6.200 0.611 6.000 1.500 0.204 1.000 1.800 i
= 2.500 1.000 3 0.210 0.083 15.0
m m
m m m rad m m m m m m m 2 t/m 2 t/m rad rad 2 t/m rad 2 t/m 2 t/m 1 2 t/m 2 t/m rad rad 2 t/m
OK
175980462.xls.ms_office
Return Wall
37
Formation Level
19.444
450 TOP
13.200 16 # @ 140
12 # @ 140
BACK SIDE 0 5 0 1
0 0 5 1
Curtailment Section 12 # @ 140 Bed Level 0 0 9 1
11.700
0 5 0 1
16 # @ 140
12 # @ 140
16 # @ 140
0 0 2
TOF =
9.800
BOF =
9.100
0 0 7
0 0 5
12 # @ 140 16 # @ 140
1100
625
1000
175980462.xls.ms_office
Return Wall
38
DETAIL CALCULATION 1.0
ACTIVE EARTH PRESSURE For Calculating the Active Earth Pressure COULOMB's theory is followed. Pa
0.5Kawh (h+2h3)
=
Where :Ka = Coeff. of Active Earth Pressure h = Height of Soil w = Unit W eight of Soil 2
Ka =
2
Cos (a)Cos(a + d)
Cos (f - a) Sin(f - d)Sin(f - i) 1 + Cos(a+ d)Cos (a - i)
5.7.1
Sub Str
2
Following values are taken for calculating the active earth pressure. Level Int. Chk & TOF a= Slope of Batter with Vert. 0.083 f= Coff. of internal friction of Soil 0.611 d= Angle of friction bet. Wall & earth 0.204 i= Angle of slope of fill with Horz. 0.000 Ka = 0.284
BOF rad rad rad rad
(Effect of sloping Surcharge has been taken as per CL 5.8.4 of Sub Str. Code, So " i " is taken = 0 for calculation of K a )
Horizontal Component Of Active Earth Pressure Pah Pa Cos(a + d) =
i
Acting at Y1= (h/3) above section considered a
Vertical Component Of Active Earth Pressure Pav Pa Sin(a + d) = Pah
Acting at X1 = Y1Cot (90-a) from face of Wall a d
Y1 =h/3
Pa
f
Pav 1.1
At Intermediate Checking Level Height from Formation Level, h Pa =
0.5 x
0.284 x
FL =
1.800 x
h3 =
1.025 m 1.025 x 1.0245
=
0.000 m
0.268 t/m (Width) Int. Lvl
Horizontal Component
175980462.xls.ms_office
Return Wall Will act at X2 = Y2Cot(90-a)
2.0
1.253 x Cot(90 -
0.083 )
39 =
0.104
EARTH PRESSURE DUE TO SURCHARGE As per Cl 5.8.3 of Sub Str. Code Earth pressure due to surcharge is assumed to be dispersed below formation level at an angle of 45°. P1 =
(S + V) x h1 x Ka (B + 2D)
Will act at h1/2
Live Load Surcharge per m, S= Dead Load Surcharge per m, V = Width of Distribution, B = 2.1
2
17.000 t/m 2 6.200 t/m 2.750 m
A t Interm edi ate Check ing Level
16.000 14.538
0.088
2.750 B
Formation Level
D
14.538
0
4 9 2 . 7
45
h1
0.000 Checking Level
Height, h1 =
0.000 m 14.538 m
Depth of Dispersion, D = P1 = 2.2
17.000+
0.000 x 6.200 2.750+ 29.075
0.284
=
Will act at h1/2
0.000 t/m
0.000 m
At Top of Foundation
16.000 14.450
0.175
2.750 B
Formation Level
D 0
45
14.450
175980462.xls.ms_office
Return Wall Depth of Dispersion, D = 17.000+
P1 = 3.0
40
13.450 m
6.200 0.000 x 2.750+ 26.900
0.284
=
0.000 t/m
Will act at h1/2
0.000 m
PASSIVE EARTH PRESSURE For Calculation Of Passive Earth Pressure On Substructure Coulomb Theory Is Used Pp
2
0.5 Kp w h
=
2
Kp=
Cos (f+ a) Sin(f + d) Sin(f + i) 1Cos(a- d) Cos (a - i)
2
Cos a Cos(a - d) f =
Kp= Pph
0.204 rad 1.936
d=
0.210 rad
= Pp Cos(d - a) Acting at (h/3) above section.
2
a =
P pv
=
i= 0.000 rad Factor of Safety for Passive =
0.000 rad 3
Pp Sin(d - a) Acting at X=Y Cot(90 - a)
Considering only Horizontal component because Vertical Component will be ineffective. 3.1
At Top of Foundation Passive Height = Bed Lvl or Scour Lvl TOF = 2 Pp = 0.5 x 1.936 x 1.000 x 0.000 Safe Passive Pressure = 0.000 / Ph = 0.000 x Cos( 0.2100.000 ) Resisting Moment = 0.000 x 0.000 =
3.2
4.0
SELF WEIGHT 4.1
At Interm edi ate Chec king Level FL 5
6.244
Top of Wall
0.450 Back Fill
4 0.001
0.000 m 0.000 t/m
1 1. 10 0 =
3 = 0.000 t/m = 0.000 t/m Will act @ h/3 = 0.000 t-m
At Bottom of Foundation Passive Height = Bed Lvl or Scour Lvl BOF = 2 Pp = 0.5 x 1.936 x 1.000 x 1.092 Safe Passive Pressure = 1.154 /3 Ph = 0.385 x Cos( 0.2100.000 ) Resisting Moment = 0.376 x 0.364 =
1 0. 19 2-
=
10.192-
=
0.000 m
1.092 m 1.154 t/m
9.100 =
= 0.385 t/m = 0.376 t/m 0.137 t-m
Will act @ h/3 =
0.364 m
175980462.xls.ms_office
Return Wall 3
41 1.050
1.050
4 B
11.100
1.000
0.175
0.000 6
C
4.2
16
0.200 0.700
7 8
1.625 2.725
0.500
At Top of Foundation No.
W1 W2 W3 W4 W5 W9 W11 W12 W13 W14
Shape
Horz. (m)
Vert. (m)
Density Weight 3 W(t) (t/m )
0.450 x 2.100 x 2.500 = 2.363 0.000 x 1.050 x 2.500 = 0.000 l 0.000 x 1.050 x 2.500 = 0.000 l i F e 0.000 x 1.050 x 2.500 = 0.000 v i t 0.175 x 2.100 x 2.500 = 0.459 A c 0.175 x 2.100 x 1.800 = 0.331 0.175 x -0.05 x 1.800 = -0.008 0.001 x 0.850 x 1.000 = 0.000 i v l l s 0.000 x 0.850 x 1.000 = 0.000 i s a F P e 0.001 x 1.050 x 1.000 = 0.001 Sum 3.146 CG of Total Mass from B = Moment/Weight = WX /W = CG of Total Mass above Top of Foundation = WY /W = 4.3
9.100
1.100
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5 x 1.0 x 0.5 x
L.A. from Moment L.A. Moment B (m) WX above B W Y
(tm) (m) (tm) 0.945 1.050 2.481 0.000 1.400 0.000 0.000 0.525 0.000 0.000 0.350 0.000 0.054 0.700 0.322 0.019 1.400 0.463 0.000 2.083 -0.017 0.000 0.000 0.001 1.019 3.249 1.019 /3.146 = 0.324 m 3.249 /3.146 = 1.033 m
0.400 0.625 0.625 0.625 0.117 0.058 0.058 0.625 0.625 1.625
At Bottom of Foundation No.
W1 W2 W3 W4 l W5 l i F e W6 i v t c W7 A W8 W9 W10 W11 W12
Shape
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 1.0 x 05x
Horz. (m) 0.450 x 0.000 x 0.000 x 0.000 x 0.175 x 1.625 x 1.100 x 1.100 x 0.175 x 1.000 x 1.175 x 0 001 x
Vert. (m) 2.100 x 1.050 x 1.050 x 1.050 x 2.100 x 0.700 x 0.200 x 0.500 x 2.100 x 2.100 x -0.342 x 0.850 x
Density Weight 3 W(t) (t/m ) 2.500 = 2.500 = 2.500 = 2.500 = 2.500 = 2.500 = 2.500 = 2.500 = 1.800 = 1.800 = 1.800 = 1 000 =
2.363 0.000 0.000 0.000 0.459 2.844 0.275 1.375 0.331 3.780 -0.723 0 000
L.A. from Moment L.A. Moment C (m) WX above C W Y
1.400 1.625 1.625 1.625 1.117 0.813 1.992 2.175 1.058 0.500 0.392 1 625
(tm) (m) (tm) 3.308 1.750 4.134 0.000 2.100 0.000 0.000 1.225 0.000 0.000 1.050 0.000 0.513 1.400 0.643 2.311 0.350 0.995 0.548 0.567 0.156 2.991 0.250 0.344 0.350 2.100 0.695 1.890 1.750 6.615 -0.283 2.686 -1.94 0 001
175980462.xls.ms_office
Return Wall
C "
Cos(a+ d + l)Cos(a - i) At Final Ca =
5.1
Int. Chk & TOF 0.329
Ka =
0.284
Dynamic Increment (Ca - Ka) =
0.045
BOF (Max Value of above, i.e., a and b)
At Interm edi ate Check ing Level DESCRIPTION SFH 1 to 5 = DUE TO SELF WT. OF Wall SFV 1 to 5 = DUE TO SELF WT. OF Wall 2 Increment in Earth Pressure [0.5gh (Ca-Ka)] Total Ver Load = 0.041 t Total Horz Load = 0.128 t Total Moment = 0.067 t-m
5.2
FORCE L.A. Moment 0.083 0.520 0.043 0.041 0.000 0.000 0.045 0.525 0.024
At Top of Foundation DESCRIPTION SFH 1 to 5 = DUE TO SELF WT. OF Wall SFV 1 to 5 = DUE TO SELF WT. OF Wall 2 Increment in Earth Pressure [0.5gh (Ca-Ka)] Total Ver Load = 0.094 t Total Horz Load = 0.368 t Total Moment = 0.384 t-m
5.3
FORCE L.A. Moment 0.189 1.033 0.195 0.094 0.000 0.000 0.180 1.050 0.189
At Bottom of Foundation DESCRIPTION SFH 1 to 5 = DUE TO SELF WT. OF Wall SFV 1 to 5 = DUE TO SELF WT. OF Wall 2 Increment in Earth Pressure [0.5gh (Ca-Ka)] Total Ver Load = 0.321 t Total Horz Load = 1.328 t Total Moment = 1.984 t-m
6.0
42
FORCE L.A. Moment 0.642 0.902 0.579 0.321 0.000 0.000 0.685 2.050 1.405
STRESS CALCULATION 6.1
At Interm edi ate Chec king Lev el
S.No. 1
DESCRIPTION OF LOAD
LOAD L.A. (m) Moment VERT HORZ. (t-m)
Active Earth Pressure Horizontal Component P ah Vertical Component P av
0.257 0.076
Fac
Ultimate Load Puh Mu
0.342
0.088
1.70
0.4377
0.15
0.028
0.002
1.70
0
0.00
175980462.xls.ms_office
Return Wall
So Provide Spacing = % of Steel Provided = p = =
0.307
140 1435.4 1000 >
%
mm x x 0.20%
< 3d = 100 467.5 OK
43
1402.5
O.K
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C Leaver Arm = z
z =
final z
=
655273 16362500
1=
-
1.1 fy Ast fck b d
468
=
449
d
0.95 d =
444
444 mm
Mur =
0.87 * fy *As * z 0.87 *
=
1
415
230.17 kN-m
*
= 1435.4 *
>
444 =
7 kN-m
230172882.3
N-mm
OK
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 561 113.04
= Required Spacing =
Provide Spacing
201 140
=
X
1000
X
467.5
<
0.75 fck =
2
mm x 561 mm mm
1000
Checking for Shear Stress
Ultimate Shear = Vu = b = d = Shear stress =
Depth factor =
v =
s =
4.4 kN 1000 mm 468 mm 4.4 * 1000 1000* 468 500 d
1/4
=
0.0094
N/mm
2
or 0.7 whichever is maximum =
4.4371
1.0169
1/3
OK
175980462.xls.ms_office
Mu
Return Wall
=
16.1 kN-m
Checking for effective depth =
d
=
Ast =
.5 fck
0.15 x
d =
Mu 0.15 x b x fck
16088356 35 x 1000
1 -
mm
Mu =
16.1 KN - m
80.5 mm2 Dia Of Main Bar = # = Dia Of Bar on Comp Side = Ast =
Spacing of Main Bar required =
So Provide Spacing = % of Steel Provided = p = =
55.4
bd
2
f ck bd
35 N /mm2 415 N /mm2 1000 mm 555 mm
f y = b = d =
=
4.6 Mu
1-
f y Here :f ck =
44
0.259
140 1435.4 1000 >
%
200.96
x 80.5
1000
mm x x
< 3d = 100 555 OK
1665
0.20%
#
16 12
=
=
2497
O.K
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C Leaver Arm = z
z =
final z
1=
655273 19425000 527 mm
Mur =
415
273.25 kN-m
1
-
1.1 fy Ast fck b d
555
=
536
d
0.95 d =
527
( Min of above )
0.87 * fy *As * z 0.87 *
=
=
*
= 1435.4 *
>
527 =
16 kN-m
273253368.3
OK
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12
X
1000
X
555.0
N-mm
mm
mm mm
175980462.xls.ms_office
6.3
Return Wall
45
At Bottom of Foundation
S.No. 1
LOAD Moment (t-m) L.A. (m) Moment (t-m) Front L.A. Ms VERT HORZ.
DESCRIPTION OF LOAD Active Earth Pressure Horizontal Component Pah
3.464
Vertical Component Pav
1.022
2 Earth Pressure due to Surcharge Ph 3 Passive Earth Pressure 4 Self Weight & Back Fill TOTAL Due to seismic Effect Combined Load with Seismic 6.2.1
0.000 0.376 12.904 13.926 -0.321 13.605
1.253
4.339
0.104
0.107
0.000 0.364 1.273
0.000 -0.137 16.433 20.742 1.984 22.727
Stresses at Bottom of Foundation
Vert. Load (t)
Case
Moment (t-m)
W 13.926 13.605
Without Seismic With Seismic
M 20.742 22.727
Z (m)
e (m) B (m)
M/W 1.489 1.670
2.725
Z-B/2 0.127 0.308
2
2
Pmax (t/m )
Pmin (t/m )
W /B(1+6e/B) 6.54 8.38
W /B(1-6e/B) 3.68 1.61
Design of Toe Slab Max Projection of Toe Slab
=
1.100
m
On safer side Taking Max Foundation Pressure as UDL ( Though it will be Trapezoidal ) Max Pressure = Max Moment = Ultimate Moment Mu
=
83.781 kN/m 83.781
=
x 2
1.100
1.700
x
2
= 50.69
=
50.69 86.17 kN-m
86.2 kN-m
Checking for effective depth =
d
( Taking Unit Width in Consideration )
=
0.15 x
d =
86168398 35 x 1000
Mu 0.15 x b x fck =
128.1
mm
2.621
2.679
1.452
18.730 21.409 21.409
175980462.xls.ms_office
Return Wall
Total Weight of Soil / m Run = Surcharge =
8.344 x
Vertical UDL
=
150.192
150.192 kN/m 150.192
Max Moment =
150.192 kN/m
x
127.7 kN-m
Checking for effective depth =
=
Ast =
.5 fck
0.15 x
75.10
75.10
=
127.66 kN-m
Mu 0.15 x b x fck =
4.6 Mu
1-
2
f ck bd
35 N /mm2 415 N /mm2 1000 mm 630 mm
Mu =
155.9
mm
bd
127.7 KN - m
567.6 mm2 Dia Of Main Bar = # = Dia Of Bar on Comp Side = Ast =
Spacing of Main Bar required =
So Provide Spacing = % of Steel Provided = p = 0.228
=
d =
f y
=
150.192 kN/m
2
127663200 35 x 1000
1 -
=
( Tak ing Unit Width in Consideration )
1.700
Mu
d
0.000
1.000
=
=
+
x 2
Ultimate Moment
f y = b = d =
=
0.000 kN/m
Total Vertical UDL
Here :f ck =
18.000
46
%
140 1435.4 1000 >
#
200.96
x 567.6
1000
mm x x
< 3d = 100 630 OK
1890
O.K
X
1000
X
0.20%
16 12
=
=
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % = = Required Spacing =
0.12 100 756 113.04 150
2
mm x 756
1000
630.0
354
mm
mm mm
175980462.xls.ms_office
Return Wall m W+Bc+P p
Total Resisting Force, R =
6.963 = Factor of Safety =
47
+
4.088
+
0.376
11.427 Resisting Force Horz. Force
=
11.427 3.088
=
3.701 OK
>
1.500