1. DISEÑO DE LOSAS POR EL METODO DIRECTO a. DEFINICIÓN.El Método de Diseño Directo se basa en ensayos (Jirsa et al. 1969) realizados con cargas gravitacionales uniformes y en las reacciones resultantes resultante s en las columnas determinadas por estática. Las cargas laterales tales como viento, o aquellas inducidas por un sismo, requieren un análisis estructural detallado. El método de diseño directo se desarrolló tomando en cuenta los procedimientos teóricos para la determinación de los momentos en losas sin y con vigas, la necesidad de disponer de procedimientos simples de diseño y construcción y precedentes derivados del comportamiento comportamien to de los sistemas de losas. En consecuencia, los sistemas de losa que se diseñan con el método de diseño directo deben cumplir con las limitaciones que se describen posteriormente.
Figura 01.- Distribución características de análisis método directo
‘l1 Dirección analizada ‘l2 Dirección transversal
Para la franja de columna para cada lado se toma el 25% de la dirección más corta.
La diferencia del paño y las franjas de columna es la franja central.
En la franja de columna no es necesario que exista viga.
Figura 02.- Distribución características de análisis método directo
‘m,n =franja de columna
p,q= franja central que corresponde a ese paño
b. PRE DIMENSIONAMIENTO DE ESPESOR DE LOSA El espesor minino h para losas con vigas que se extienden entre los apoyos en todos los lados deben ser:
Para fm 0.20; se aplicara las disposiciones de la siguiente tabla 1
Para 0.20 < fm
<
2; h no debe ser menor que (kg/cm2):
(Ecuación. 01)
Para fm
>
2; h no debe ser menor que (kg/cm2):
(Ecuación. 02)
Tabla 01.- Espesor mínimo de losas no pre esforzadas en dos direcciones sin vigas interiores (pulg.)
o
o
Ln es la luz libre en la dirección larga, medida entre caras de los apoyos Para Fy entre los valores dados en la tabla, el espesor mínimo debe obtenerse por interpolación lineal.
o
Los paneles exteriores se deben considerar como sin viga de borde si fm es menor que 0.8.
Figura 03.- Ejemplos de la porción de losa que debe incluirse con la viga
Inercia de losa (Ecuación. 03)
c. LIMITACIONES DEL MÉTODO i.
Deben existir un mínimo de tres vanos continuos en cada dirección.
ii.
Las longitudes de luces contiguas medidas centro a centro de los apoyos en cada dirección no deben diferir en más de un tercio de la luz mayor.
iii.
Los paneles de las losas deben ser rectangulares, con una relación entre la luz mayor y menor, medidas centro a centro de los apoyos del panel, no mayor de 2.
iv.
Las columnas pueden estar desalineadas hasta un 10 por ciento de la luz (medido en la dirección del des alineamiento) con respecto a cualquier eje que pase por el centro de columnas sucesivas.
v.
Todas las cargas deben ser únicamente gravitacionales y estar uniformemente distribuidas en todo el panel.
vi.
La carga viva no amplificada no debe exceder de dos veces la carga muerta no amplificada.
vii.
Para un panel con vigas entre los apoyos en todos los lados, debe satisfacerse la ecuación para las dos direcciones perpendiculares.
(Ecuación. 04)
d. DISEÑO POR FLEXIÓN i. Momento estático amplificado del vano El momento Estático amplificado total, Mo, para un vano debe determinarse en una franja limitada lateralmente por el eje central de los paneles adyacentes al eje que une los apoyos. La suma absoluta del momento positivo y el promedio de los momentos negativos, en cada dirección, no debe ser menor que:
= ∗∗
(Ecuación. 05)
Dónde: -
es la luz entre columnas (dirección que se considera los momentos) y no debe ser menor que 0.65
(cuando exista capiteles/ábacos).
(Ecuación. 06)
ii. Distribución del momento estático total amplificado La distribución de los momentos son fracciones del momento estático amplificado y se determinaran distintamente para paños interiores/exteriores.
Figura 04.-Distribucion características de análisis método directo
iii. Momentos de losa - Paños interior: M (-), M (+) M (-)=0.65Mo (Ecuación. 07 ) M (+)=0.35Mo
(Ecuación. 08 )
iv. Momentos de losa - Paños exterior: Tabla 02.-Coeficientes de distribución en un vano final
Estos momentos son totales, entonces se procede a calcular los momentos que se presentan en la franja de columna para que por diferencia se calculen la franja central. Dentro de la franja de columna hay parte de losa, esto es parte del análisis.
v. Momentos en franja de columna: Tabla 03.- Fracción del momento negativo interior
Mu
en una
franja de columna (Mi (-)), (M (-)).
Tabla 04.-Fracción del momento positivo interior Mu en una franja de columna (M (+)), (Mex(+)).
Tabla 05.- Fracción del momento negativo exterior
M u
en
una franja de columna (Me (-))
(Ecuación. 09)
(Ecuación. 10 )
Dónde:
X es la menor longitud del rectángulo
Y es la mayor longitud del rectángulo
C rigidez torsional de la viga extrema transversal
Bt es el módulo de cortante
vi. Momentos amplificados en vigas Tabla 06.-Fracción de Mu de una franja de columna asignable a las vigas
e. DISEÑO POR CORTANTE e.1. Calculo del cortante actuante, losa con vigas La resistencia de diseño a cortante de losas en la cercanía de columnas, de cargas concentradas o zonas de reacción está regida por la más severa de las condiciones
Cortante en zona central, para losas con vigas (Ecuación. 11)
= ∗
Cortante en extremos, para losas con vigas (Ecuación. 12)
=.∗ ∗
Dónde:
Wu: carga ultima amplificada
= − ∗ (Ecuación. 13)
A es la luz libre entre columnas
‘d es el peralte efectivo de la losa
e.2. Calculo del cortante resistente, losa con vigas La resistencia a cortante del concreto se calcula de la siguiente manera:
=.∗ √ ′ ∗ ∗ Dónde: ‘f’c: Resistencia ‘b: ancho
de análisis de la losa
‘d: peralte
a compresión del concreto
efectivo de la losa
:0.85 Debe cumplirse que:
≤
(Ecuación. 13)
f. DISEÑO POR PUNZONAMIENTO f.1. Calculo del cortante actuante, losa sin vigas
Figura 05.- Distribución de área tributaria y área critica
=∗(−)
(Ecuación. 14)
Dónde:
Wu=carga ultima amplificada
A= área tributaria Ao=Área critica
f.2. Calculo del cortante resistente, losa sin vigas
=.∗ ∗ √ ′ ∗ ∗ ′ =.∗ ∗ ∗ √ ∗ ∗
=.∗ √ ′ ∗ ∗
(Ecuación. 15)
(Ecuación. 16) (Ecuación. 17 )
Dónde: o
=
o
s=40 columnas interiores
o
s=30 columnas en estreno
o
s=20 columna en esquina
o
‘bo= perímetro critico
(Ecuación. 18 )
2. APLICACIÓN DEL METODO DIRECTO. Se necesita diseñar la siguiente en la dirección horizontal. DATOS:
Losa maciza, h=25 cm Vigas(x) 30x70cm Columnas 40x40
F’c=210kg/cm2
Fy=4200kg/cm2 Carga amplificada Wu=1700 kg/m2
Figura 06.-Losa de 09 años, con vigas peraltadas (lado izquierdo distribución bidireccional b>a, b/a<2 SOLUCION a. Pre dimensionamiento
= perimetro 180 = ()+() = 0.17m ≡ se asumira el valor inicial = 0.25
b. Calculo de la rigidez relativa viga-losa
INERCIA DE VIGA
yi
Ai
yi*Ai
Ii
ycg
di
^2
Elem.
b
h
1
30
70
35 2100 73500
857500
42. 85
7. 85
129368. 92
986868. 92
2
45
25
58 1125 64688
58593. 75
42. 85
14. 65
241488. 64
300082. 39
370857.56
1286951.31
3225 1E+05 916093.75
INERCIA DE LOSA
Ai*di
Iv
Rigidez relativa de la seccion
Elem.
bl
hl
Il
3
365
25
475260.42
2.71
Iv/IL
CALCULO DE RIGIDEZ RELATIVA DE VIGA - LOSA (EJE 2-3) INERCIA DE VIGA
Elem.
b
1
30
2
120
h
yi
Ai
yi*Ai
55 27.5 1650 45375 25
Ii
ycg
di
^2
Ai*di
Iv
415937.5
53.31
25.81
1098855.36
1514792.86
67. 5 3000 2E+05
156250
53. 31
14. 19
604370. 45
760620. 45
4650 2E+05
572187.5
1703225.81
2275413.31
INERCIA DE LOSA
Rigidez relativa de la seccion
Elem.
bl
hl
Il
3
725
25
944010.42
2.41
Iv/IL
Figura 07.-Distribución de rigidez relativa en losas Tabla 07.-Verificacion de peralte para deflexiones
Nota: los valores del peralte por control de deflexiones no supera el valor inicial h=25 cm por lo tanto no se modificara el espesor.
Tabla 08.-Verificacion aplicación para desarrollar el método directo
c. Calculo de momentos en la estructura Tabla 09.-Resultado de momentos obtenidos por el método de rigidez tramo ejes (A -D) TRAMO
TRAMO
TRAMO
(1-2)
(2-3)
(3-4)
l1
7.00
7.50
7.00
l2
4.15
4.15
4.15
luz libre(m)
ln
6.60
7.10
6.60
log. Tran.(m)
l'2
4.15
4.15
4.15
Carga ultima (tn/m2)
Wu
1.70
1.70
1.70
1
2.38
2.38
2.38
(Ecuación. 03)
Mo
38.41
44.46
38.41
(Ecuación. 05)
ELEMENTO EN ANÁLISIS (A-D)
ID
Superior(m)
1
Momento en losa(tn-m) Momento en losa (-)(tnm) Momento en losa (+)(tnm)
M(-)
Momento en Fr. de col. (+)(tn-m) Momento en Fr. de col. ()(tn-m) Momento en Fr. central ()(tn-m) Momento en Fr. central (+)(tn-m) Momento en Fr. Col en viga (-)(tn-m) Momento en Fr. Col en viga (+)(tn-m) Momento en Fr. Col en losa (-)(tn-m) Momento en Fr. Col en losa (+)(tn-m)
28.90
-26.89
21.90
15.56
21.90
l2/l1
0.59
0.55
0.59
*l2/l1
1.41
1.32
1.41
%
96.6
87.214
88.4
-23.45
25.54
-3.438
3.352
-19.93
21.71
-3.518
3.832
87.214 M(-)
5.937
M(+) M(-) M(+) M(-) M(+) M(-) M(+)
2.8645
2.7996 21.71
5.052
-19.93
11.691
16.232 3.832
2.0632
0.203
-3.438
0.892
-3.518 2.8645
Tabla 02
Tabla 03 Tabla 04 y 05
5.943 19.097
3.352 1.8049
16.232 0.891
96.7
-23.45
3.11
(Ecuación. 06)
87.214 25.54
13.754
2.7996 5.047
87.214
88.4
19.097 0.209
88.4
1.0375
-6.15
M(+)
Porcentaje de momento para franja de columna
-26.89 28.90
-6.15
Franja Franja Columna central
Tabla 10.-Resultado de momentos obtenidos por el método de rigidez tramo ejes (B -C) TRAMO
TRAMO
TRAMO
(1-2)
(2-3)
(3-4)
l1
7.00
7.50
7.00
l2
8.00
8.00
8.00
l1
7.00
7.50
7.00
l2
8.50
8.50
8.50
luz libre(m)
ln
6.60
7.10
6.60
log. Tran.(m)
l'2
8.25
8.25
8.25
Carga ultima (tn/m2)
Wu
1.70
1.70
1.70
1
1.42
1.42
1.42
(Ecuación. 03)
Mo
76.37
88.38
76.37
(Ecuación. 03)
Elemento en analisis
Franja Columna
ID
Superior(m)
Franja central
2.25 3.5
Superior(m)
2.5
1
Momento en losa(tn-m) Momento en losa (-)(tnm) Momento en losa (+)(tnm)
M(-)
-12.22
M(+)
-53.46 -57.44
-57.44 -53.46
43.53
30.93
43.53
l2/l1
1.18
1.10
1.18
*l2/l 1
1.67
1.56
1.67
(Ecuación. 06)
-12.22
Tabla 02
96.7
Tabla 03
Porcentaje de momento para franja de columna Momento en Fr. de col. (+)(tn-m) Momento en Fr. de col. ()(tn-m) Momento en Fr. central ()(tn-m) Momento en Fr. central (+)(tn-m) Momento en Fr. Col en viga (-)(tn-m) Momento en Fr. Col en viga (+)(tn-m) Momento en Fr. Col en losa (-)(tn-m) Momento en Fr. Col en losa (+)(tn-m)
%
69.64
96.6
72
69.64 M(-)
M(-)
30.31
M(+) M(-)
M(+)
4.547
-0.403 13.21
-35.16 -31.64 18.93
-5.584 -6.204
-1.77
30.31
8.661
25.77
-11.82
-16.08 -16.23
-31.64 -35.16
-10.03
M(+) M(-)
22.27
13.21
-10.04 25.77
-6.204 -5.584 3.341
Tabla 04 y 05
69.64 -41.36 -37.23
-16.23 -16.08
-0.415
69.64
72 -37.23 -41.36
-11.8
M(+)
72
-1.772 4.547
Tabla 11.-Resultado de momentos obtenidos por el método de rigidez tramo ejes (1 -4) TRAMO
TRAMO
TRAMO
(1-2)
(2-3)
(3-4)
l1
8.00
8.50
8.00
l2
3.65
3.65
3.65
luz libre(m)
ln
7.60
8.10
7.60
log. Tran.(m)
l'2
3.65
3.65
3.65
Carga ultima (tn/m2)
Wu
1.70
1.70
1.70
1
2.72
2.72
2.72
(Ecuación. 03)
Mo
44.80
50.89
44.80
(Ecuación. 05)
Elemento en analisis
ID
Superior(m)
1 Momento en losa(tn-m) Momento en losa ()(tn-m) Momento en losa (+)(tn-m)
M(-)
-7.17
Momento en Fr. de col. (+)(tn-m) Momento en Fr. de col. (-)(tn-m) Momento en Fr. central (-)(tn-m) Momento en Fr. central (+)(tn-m) Momento en Fr. Col en viga (-)(tn-m) Momento en Fr. Col en viga (+)(tn-m) Momento en Fr. Col en losa (-)(tn-m) Momento en Fr. Col en losa (+)(tn-m)
-33.08
-33.08
-31.36
25.54
17.81
l2/l1
0.46
0.43
0.46
*l2/l1
1.24
1.17
1.24
%
91.313 92.118
96.6 91.313
M(-)
6.924
M(+) M(-)
23.318 0.244
M(+) M(-)
2.2184
M(+) M(-) M(+)
19.82
3.4976
2.2184 -25.9
-4.571
5.892
-24.34 19.82
-4.571 2.4611
0.237
-2.724
13.946 -4.295
Tabla 02
-4.295
-1.04 3.4976
Tabla 03 Tabla 04 y 05
6.931 23.318
-2.607
-25.9
96.7
-28.64
1.4039 -24.34
1.039
-30.47
-2.607
(Ecuación. 06)
91.313
16.407 -2.724
5.886
92.118 91.313
-30.47
2.74
25.54
92.118 -28.64
0.9125
-7.17
M(+)
Porcentaje de momento para franja de columna
-31.36
Franja Franja Columna central
Tabla 12.-Resultado de momentos obtenidos por el método de rigidez tramo ejes (2-3) TRAMO
TRAMO
TRAMO
(1-2)
(2-3)
(3-4)
l1
8.00
8.50
8.00
l2
7.00
7.00
7.00
l1
8.00
8.50
8.00
l2
7.50
7.50
7.50
luz libre(m)
ln
7.60
8.10
7.60
log. Tran.(m)
l'2
7.25
7.25
7.25
Carga ultima (tn/m2)
Wu
1.70
1.70
1.70
1
2.53
2.53
2.53
(Ecuación. 03)
Mo
88.99
101.08
88.99
(Ecuación. 03)
Elemento en analisis
Franja Franja Columna central
ID
Superior(m)
1.5 4
Superior(m)
1.75
1
Momento en losa(tn-m) Momento en losa (-)(tn-m)
M(-)
Momento en losa (+)(tn-m)
M(+)
50.72
35.38
50.72
l2/l1
0.91
0.85
0.91
*l2/l1
2.29
2.16
2.29
-14.24
Porcentaje de momento para franja de columna Momento en Fr. de col. (+)(tn-m) Momento en Fr. de col. (-)(tnm) Momento en Fr. central ()(tn-m) Momento en Fr. central (+)(tn-m) Momento en Fr. Col en viga ()(tn-m) Momento en Fr. Col en viga (+)(tn-m) Momento en Fr. Col en losa ()(tn-m) Momento en Fr. Col en losa (+)(tn-m)
%
-62.29 -65.70
77.81
96.6
79.41
77.81 M(-)
M(-)
M(-)
M(+)
33.55
5.92
-44.35
-7.826
Tabla 04 y 05
-0.47
-41.2
-11.7 33.55
-7.826 4.214
Tabla 03
11.25
23.88 -7.27
-2.063
96.7
-13.77
-13.53 -13.82
-44.35
Tabla 02
39.47
7.284 -41.2
-11.69
M(+) M(-)
28.09
11.25
-14.24
77.81 -52.18 -48.47
-13.82 -13.53
-0.484
77.81
79.41
39.47
M(+)
79.41
-48.47 -52.18
-13.75
M(+)
-65.70 -62.29
(Ecuación. 06)
-7.27
-2.065 5.92
Figura 08.-Distribución de momentos finales en dirección horizontal
Figura 08.-Distribución de momentos finales en dirección vertical