vision MENJADI PERUSAHAAN TERKEMUKA DALAM BIDANG ENGINEERING, PRODUCTION, INSTALLATION (EPI) (EPI) INDUSTRI BETON DI ASIA TENGGARA
mission 1.
Menyediakan produk dan jasa yang berdaya berdaya saing dan memenuhi harapan Pelanggan.
2.
Memberikan nilai lebih melalui proses bisnis yang sesuai dengan persyaratan dan harapan Pemangku Kepentingan.
3.
Menjalankan sistem manajemen dan teknologi yang tepat guna, untuk meningkatkan esiensi, konsistensi konsistensi mutu, keselamatan dan kesehatan kerja, yang berwawasan lingkungan.
4.
Tumbuh dan berkembang bersama mitra kerja secara sehat dan berkesinambungan.
5.
Mengembangkan Mengembangkan kompetensi dan kesejahteraan Pegawai.
Business activities in precast concrete products were initiated by PT Wijaya Karya since 1978. The robust economic growth and developments in Indonesia at that time accelerated the growth of precast concrete products business. To anticipate it, PT Wijaya Karya continued to expand its business operations by setting up new plants/ factories and creating variety of the products. In order to enhance its operations and professionalism, PT Wijaya Karya Beton Tbk. (Wika Beton) was established as a subsidiary company of PT Wijaya Karya on March 11, 1997. As the Market Leader in the industry in Indonesia, Wika Beton is supported by its operation network which consists of 10 (ten) plants/ factories, and several sales ofces scattered throughout Indonesia. The operation network is created to ensure the customers’ satisfaction.
BOARD OF COMMISSIONERS:
1. 2. 3. 4. 5. 6.
Budi Harto (President) Nariman Prasetyo A. Boediono Asah Mahdiani Tumik Tumik Kristianingsih Priyo Suprobo
To keep up with the industry’s needs and and customers’ satisfaction, Wika Beton run its operation in accordance with the curren t requirement such as ISO 9001 : 2000, occupational safety and health, etc.
BOARD OF DIRECTORS:
1. 2. 3. 4. 5. 6.
Wilfred A. Singkali Singkali (President) Entus Asnawi Asnawi Mukhson Fery Hendriyanto Hadian Pramudita Hari Respati Muhammad Zulkarnain
PRECAST CONCRETE PRODUCTS
Precast concrete products are commonly used in the construction nowadays. Almost all of the structures require it. It is simply because the use of precast concrete has lot of advantages. It is fast. The components of the structures, which is made of precast concrete, can be simultaneously manufactured with the other construction activities. Hence, it saves time. It is economical and durable. Initially, we use timber or steel in some of the structures. The use of timber will need more frequent replacement, as it is not strong st rong and does not last long. Steel is becoming expensive. Moreover those materials require maintenance, whereas concrete is maintenance free. Flexibility in shape. The shape can be produced in accordance to the requirement. Quality assured. The production are centralized in one place and can be easily controlled.
Wika PC Spun Pile is produced by the process of spinning. The high level of concrete compactness as a result of centrifugal force causes Wika PC Spun Pile to have high durability and permeability to with stand certain environment condition. PC Spun Pile is designed to bear various types of structures. It is used among others on high-rise buildings, industrial buildings, marine structures, bridges, etc.
PC Spun Square Piles is a hollow square pile which is produced by the process of spinning. The pile can be used for deep foundation of structures, such as high-rise buildings, industrial buildings, bridge, marine structures, etc. It has many advantages compared with normal square piles. The bearing capacity is relatively equal to the normal square pile although it requires less usage of material. It is lighter so that it can reduce transportation cost.
These products are used as the components of y over or bridge structures. Initially the beams were produced only in ”I” shape. Presently, we produce box girders, U-girders, etc. and also produce voided slab, concrete diaphragm, half slab as complement of the structures. The girders are produced in two methods, post-tensioned and pretensioned process of stressing, subject to the conditions and requirements. The pretensioned girders is a monolithic girder which is economical as it does not require additional prestressing accessories and prestressing process at the construction site.
The main product of this structures is concrete pipe, which consists of low pressure pipes and pressure pipes. The low pressure pipe is used as sewerage, water distribution, etc. The pressure pipe is produced using vibro pressed centrifugal system to get high density concrete with low permeability and low shrinkage. It is used as raw water transmission pipes as part of water treatment plant which requires very high resistance to the water pressure.
Railway sleeper produced by Wika Beton is monoblock pretensioned concrete sleeper using the single line production system. The production method developed by Wika Beton is exible and suitable for the conditions in Indonesia. The other products related to railway are catenary poles, slab for railway bridge, ballast protection wall, railway crossing, etc.
The Prestressed Spun Concrete Pole (PC Pole) produced using the centrifugal method constitutes the last generation of the electrical pole development in Indonesia. From wooden pole, steel pole and square concrete pole, prestressed spun concrete pole were subsequently introduced. This type of concrete pole is produced in various types for low-voltage, medium-voltage and high voltage electrical distribution networks. To facilitate handling in remote areas, Wika Poles are also produced in segments.
Post-tensioned girder is produced in segments and normally assembled and post tensioned at site. The segmental girder is required when the weight and size of girder does not enable it to be lifted and transported.
Prestressed Concrete Sheet Pile was initially produced in at shape. PC Corrugated Sheet Pile is subsequently produced to get a better performance for certain conditions. PC sheet pile is normally used as permanent structures of retaining walls like quay walls, revetments, jetties, break waters, reclamation walls, training dykes, foot protection, dolphins, dock walls, cut off walls, river embankments, water control gates, etc. The preference of using concrete sheet pile is for the convenience and the low cost in its construction/installation work.
The application of precast concrete products in marine structures has an additional advantages. Not only do we have faste r and more economical construction work, it also make the job easier. easier. The construction work will be more complicated if there is still cast in site concrete work. Concrete Piles, Sheet Piles, Girders, Slabs, etc. are required for structures like wharf/jetty, bridge, break water, water, etc.
Wika Beton also produce other type of standard products as well as custom-made products as required by our customer. Some of the products are : - Prestressed Square Piles, Triangular Triangular Piles - Pipe Rack for oil company - Water Storage and Water Cooling Tower for power plant - Building and Housing Components - Fences - Underground Utility Ducting, etc.
PILE SHAPE & SPECIFICATION | PRESTRESSED CONCRETE SPUN PILES JOINT PLATE
JOINT PLATE PRESTRESSING STEEL SPIRAL
SIZE
PILE LENGTH SIZE
MIDDLE / UPPER PILE JOINT PLATE
PENCIL SHOE WALL (t)
SIZE
PILE SECTION PILE LENGTH
BOTTOM / SINGLE PILE
PRESTRESSED CONCRETE SPUN PILES SPECIFICATION Concrete Compressive Strength fc' = 52 MPa (Cube 600 kg/cm 2 )
Size Thickness Cross Section ( mm ) Wall ( t ) ( cm 2 )
Section Inertia ( cm 4 )
Unit Weight ( kg/m )
300
60
452.39
34,607.78
113
350
65
581.98
62,162.74
145
400
75
765.76
106,488.95
191
450
80
929.91
166,570.38
232
500
90
1,159.25
255,324.30
290
600
100
1,570.80
510,508.81
393
800
120
2,563.54
1,527,869.60
641
1000 ***
140
3,782.48
3,589,571.20
946
1200 ***
150
4,948.01
6,958,136.85 1,237
Note :
Bending Moment Class A2 A3 B C A1 A3 B C A2 A3 B C A1 A2 A3 B C A1 A2 A3 B C A1 A2 A3 B C A1 A2 A3 B C A1 A2 A3 B C A1 A2 A3 B C
Crack * Break ( ton.m ) ( ton.m )
2.50 3.00 3.50 4.00 3.50 4.20 5.00 6.00 5.50 6.50 7.50 9.00 7.50 8.50 10.00 11.00 12.50 10.50 12.50 14.00 15.00 17.00 17.00 19.00 22.00 25.00 29.00 40.00 46.00 51.00 55.00 65.00 75.00 82.00 93.00 105.00 120.00 120.00 130.00 145.00 170.00 200.00
Allowable Decompression Length Compression Tension of Pile ** ( ton ) ( ton ) (m)
3.75 4.50 6.30 8.00 5.25 6.30 9.00 12.00 8.25 9.75 13.50 18.00 11.25 12.75 15.00 19.80 25.00 15.75 18.75 21.00 27.00 34.00 25.50 28.50 33.00 45.00 58.00 60.00 69.00 76.50 99.00 130.00 112.50 123.00 139.50 189.00 240.00 180.00 195.00 217.50 306.00 400.00
*) Crack Moment Based on JIS A 5335-1987 (Prestressed Spun Concrete Piles) **) Length of pile may exceed usual standard whenever lifted in certain position ***) Type of Shoe for Bottom Pile is Mamira Shoe
72.60 23.11 6 - 12 70.75 29.86 6 - 13 67.50 41.96 6 - 14 65.40 49.66 6 - 15 93.10 30.74 6 - 13 89.50 37.50 6 - 14 86.40 49.93 6 - 15 85.00 60.87 6 - 16 121.10 38.62 6 - 14 117.60 45.51 6 - 15 114.40 70.27 6 - 16 111.50 80.94 6 - 17 149.50 39.28 6 - 14 145.80 53.39 6 - 15 143.80 66.57 6 - 16 139.10 78.84 6 - 17 134.90 100.45 6 - 18 185.30 54.56 6 - 15 181.70 68.49 6 - 16 178.20 88.00 6 - 17 174.90 94.13 6 - 18 169.00 122.04 6 - 19 252.70 70.52 6 - 16 249.00 77.68 6 - 17 243.20 104.94 6 - 18 238.30 131.10 6 - 19 229.50 163.67 6 - 20 415.00 119.34 6 - 20 406.10 151.02 6 - 21 399.17 171.18 6 - 22 388.61 215.80 6 - 23 368.17 290.82 6 - 24 613.52 169.81 6 - 22 601.27 215.16 6 - 23 589.66 258.19 6 - 24 575.33 311.26 6 - 24 555.23 385.70 6 - 24 802.80 221.30 6 - 24 794.50 252.10 6 - 24 778.60 311.00 6 - 24 751.90 409.60 6 - 24 721.50 522.20 6 - 24 Unit Conversion : 1 ton = 9.8060 kN
PILE SHAPE & SPECIFICATION | PRESTRESSED CONCRETE SQUARE PILES JOINT PLATE (MIDDLE PILE) WITHOUT JOINT PLATE (UPPER PILE)
JOINT PLATE
MIDDLE / UPPER PILE
PRESTRESSING STEEL SPIRAL
SIZE
JOINT PLATE (BOTTOM PILE) WITHOUT JOINT PLATE (SINGLE PILE)
PENCIL SHOE
BOTTOM / SINGLE PILE
SIZE
SIZE
PILE SECTION
PILE LENGTH
PRESTRESSED CONCRETE SQUARE PILES SPECIFICATION Concrete Compressive Strength fc' = 42 MPa (Cube 500 kg/cm 2 ) Size ( mm )
Cross Section ( cm2 )
Section Inertia ( cm4 )
Unit Weight ( kg/m)
200 x 200 250 x 250
400 625
13,333 32,552
100 156
300 x 300
900
67,500
225
350 x 350
1,225
125,052
306
400 x 400
1,600
213,333
400
450 x 450
2,025
341,719
506
500 x 500
2,500
520,833
625
Note :
Unit Conversion : 1 ton = 9.8060 kN
Bending Moment Class
Crack Ultimate ( ton.m ) ( ton.m ) 1.55 2.65 2.29 3.46 2.52 4.33 2.78 5.19 3.64 5.19 3.98 6.23 4.48 7.47 4.92 9.34 5.33 6.57 6.07 8.72 6.63 10.90 7.30 13.08 7.89 9.96 8.71 12.45 9.51 14.95 11.82 22.42 11.17 14.01 12.10 16.81 13.01 19.62 14.78 25.22 15.16 18.68 16.19 21.79 17.21 24.91 18.22 28.02
A A B C A B C D A B C D A B C D A B C D A B C D
Allowable Decompression Length Compression Tension of Pile * ( ton ) ( ton ) (m) 49.08 81.40 79.62 77.92 118.59 116.76 114.66 111.60 163.98 160.68 157.45 154.32 213.96 210.60 207.32 198.01 270.98 267.61 264.30 257.88 335.12 331.72 328.38 325.09
27.47 28.10 34.80 41.30 35.40 42.20 50.20 61.90 38.60 50.90 63.10 75.00 51.40 63.80 76.00 111.60 64.30 76.80 89.10 113.30 77.30 89.90 102.20 114.50
6-9 6 - 10 6 - 11 6 - 11 6 - 11 6 - 11 6 - 12 6 - 12 6 - 11 6 - 12 6 - 12 6 - 13 6 - 12 6 - 12 6 - 13 6 - 14 6 - 12 6 - 13 6 - 13 6 - 14 6 - 13 6 - 13 6 - 14 6 - 14
Splice Class Compatible Optional to Body Mcrack II I IV III II II I IV V IV/V III II III/IV/V I IV III II IV I III/IV I V IV IV/V III III/IV/V II II/III/IV/V I IV III IV III III/IV II II/III/IV I IV III III/IV II II/III/IV I II/III/IV I
*) Length of pile may exceed usual standard whenever lifted in certain position
TYPICAL SPLICE SPECIFICATION Size (mm) 200 x 200 250 x 250
300 x 300
350 x 350
400 x 400
450 x 450
500 x 500
Bending Moment Class Allowable Ultimate (ton.m) (ton.m) I II I II III IV I II III IV V I II III IV I II III IV V I II III IV I II III IV
1.56 0.76 3.17 2.99 2.34 1.29 5.96 4.53 4.28 3.96 2.34 7.67 6.81 5.71 3.30 12.20 11.28 9.41 8.58 3.97 15.80 14.07 13.02 6.55 19.72 16.51 15.14 7.56
2.11 1.02 4.28 4.03 3.17 1.74 8.05 6.12 5.78 5.35 3.16 10.35 9.19 7.71 4.45 16.47 15.23 12.71 11.58 5.36 21.33 19.00 17.57 8.84 26.63 22.29 20.43 10.21
Tension Allowable Ultimate (ton) (ton) 41.82 16.34 55.22 41.41 41.41 24.50 83.64 62.73 55.22 41.41 24.50 83.64 83.64 55.22 27.61 117.95 88.46 83.64 62.73 27.61 147.43 117.95 88.46 41.82 118.60 117.95 88.46 41.82
47.05 18.38 62.12 46.59 46.59 27.57 94.10 70.57 62.12 46.59 27.57 94.10 94.10 62.12 31.06 132.69 99.52 94.10 70.57 31.06 165.86 132.69 99.52 47.05 133.43 132.69 99.52 47.05
EXAMPLES OF SPLICE SELECTION Case 1 : Compatible to Body
Case 2 : Optional Splice
Moment Crack Splice of PC Piles having equivalent performance to the crack bending moment of the main body.
Application of optional splices should be approved by structure designer.
Upper Pile 300x300 Class A Mom. Crack = 3.64 ton.m Mom. Ult = 5.19 ton.m Decomp. Tension = 35.40 ton
Upper Pile 300x300 Class A Mom. Crack = 3.64 ton.m Mom. Ult = 5.19 ton.m Decomp. Tension = 35.40 ton
Splice : Class IV Mom. Allow = 3.96 ton.m Tens. Allow = 41.41 ton
Splice : Class V Mom. Allow = 2.34 ton.m Tens. Allow = 24.50 ton
Bottom Pile 300x300 Class A Mom. Crack = 3.64 ton.m Mom. Ult = 5.19 ton.m Decomp. Tension = 35.40 ton
Bottom Pile 300x300 Class A Mom. Crack = 3.64 ton.m Mom. Ult = 5.19 ton.m Decomp. Tension = 35.40 ton
GIRDER SHAPE & DIMENSION | PC - I GIRDER
80 80
55 35 35
17
160
170
125
90
65
20
20
65
65
70
70
PC I H-90
PC I H-125
PC I H-160
PC I H-170
PC I H-210
Area : 2,572 cm2 Inertia : 2,266,607 cm4
Area : 3,167 cm2 Inertia : 5,496,255 cm4
Area : 4,773 cm2 Inertia : 14,611,104 cm 4
Area : 6,695 cm2 Inertia : 23,641,085 cm 4
Area : 7,495 cm2 Inertia : 41,087,033 cm 4
POST-TENSION PC-I GIRDER PC I H-90cm
( cm / MPa ) VDL VLL Vult 185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 140 / 40
117 128 138 151 161 171 150
179 187 196 204 212 221 173
SPECIFICATION PC I H-125cm
Beam Support Span Beam (m) Spacing / fc' Reaction (kN)
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
210
18
17
476 505 533 565 594 622 508
Beam Spacing / fc'
PC I H-160cm
Beam Support Reaction (kN)
( cm / MPa ) VDL VLL Vult
185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 140 / 50 140 / 60
200 211 222 233 244 255 225 234
229 237 245 254 262 270 211 217
673 702 731 761 790 820 672 695
Beam Spacing / fc'
Beam Support Reaction (kN)
( cm / MPa ) VDL VLL Vult
185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 140 / 50 140 / 50
318 331 344 357 370 383 396 419 369 381
279 913 287 945 295 976 304 1008 312 1040 320 1072 329 1104 337 1148 261 944 264 964
Note : Based on bridge load refer to SNI 1725:2016 and assume bridge cross section parameter : 200mm for CIP Slab, 70mm concrete deck slab and 50mm asphaltic layer
PC I H-170cm Beam Spacing / fc'
Beam Support Reaction (kN)
( cm / MPa ) VDL VLL Vult
185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 185 / 50 185 / 60 185 / 60 185 / 60 140 / 60 140 / 60 140 / 60
432 445 517 532 546 561 576 591 606 589 603 620
345 1180 349 1204 354 1297 358 1324 362 1350 366 1377 370 1403 374 1429 378 1456 289 1265 292 1289 297 1318
PC I H-210cm Beam Spacing / fc'
Beam Support Reaction (kN)
( cm / MPa ) VDL VLL Vult
185 / 40 185 / 40 185 / 40 185 / 40 185 / 40 185 / 50 185 / 50 185 / 50 185 / 50 185 / 60 185 / 60 140 / 60 140 / 60 140 / 60 140 / 60 140 / 70
607 623 639 655 671 686 705 721 750 766 782 700 714 728 742 756
366 1432 370 1460 374 1487 378 1515 382 1542 386 1570 392 1604 396 1632 400 1675 404 1703 408 1730 312 1446 315 1469 318 1493 322 1516 325 1540
GIRDER SHAPE & DIMENSION | PC - VOIDED SLAB
Cgc
25
Cgc
30
57
Cgc
30
62
PC VS-57/97
PC VS-62/97
Area : 4,397 cm2 Inertia : 1,411,137 cm4
97
97
97
97
PC VS-66/97
Area : 4,420 cm2 Inertia : 1,785,519 cm 4
74
39
33
31
28.5
Cgc
30
66
PC VS-74/97
Area : 4,784 cm2 Inertia : 2,170,299 cm4
Area : 5,032 cm2 Inertia : 2,977,600 cm4
PRETENSION VOIDED SLAB SPECIFICATION PC VS 57/97 Span Beam Support Beam (m) Spacing / fc' Reaction (kN) 6 7 8 9 10 11 12 13 14 15 16
PC VS 62/97
PC VS 66/97
Beam Support Reaction (kN)
Beam Spacing / fc'
PC VS 74/97
Beam Support Reaction (kN)
Beam Spacing / fc'
Beam Spacing / fc'
Beam Support Reaction (kN)
( cm / MPa )
VDL
VLL
Vult
( cm / MPa )
VDL
VLL
Vult
( cm / MPa )
VDL
VLL
Vult
( cm / MPa )
VDL
VLL
Vult
97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50
41 47 53 59 65 71
195 209 219 228 237 245
401 433 459 481 506 528
97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50
42 48 54 60 66 73 79
195 209 219 228 237 245 252
402 434 461 483 508 529 549
97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50
45 52 58 65 71 78 85 91
195 209 219 228 237 245 252 258
406 439 466 488 514 536 556 574
97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50 97 / 50
48 55 62 69 76 83 90 97 104 111 118
195 209 219 228 237 245 252 258 262 267 270
409 442 470 493 519 542 562 581 599 615 630
Note : Based on bridge load refer to SNI 1725:2016 and assume bridge cross section parameter only 50mm asphaltic layer without over topping CIP Slab
SEGMENT SHAPE & DIMENSION | PC - BOX GIRDER 875 25
50
13 20
Cgc
250
40
25
50
25
Area : 58,262 cm2 Inertia : 289,366,600 cm4 875 25
50
7 16
Cgc
240
40
25
50
25
PC SEGMENTAL BOX GIRDER H-240 Area : 59,042 cm2 Inertia : 309,729,100 cm4
PC BOX GIRDER SPECIFICATION TYPE
SEGMENT LENGTH
PC BOX GIRDER H-250
2.4 to 3.0 m
PC BOX GIRDER H-240
2.4 to 2.7 m
NO. LANE 7 meter width
CASTING METHOD
LAUNCHING METHOD
Short Line Method
Balanced Cantilever or Span by Span
U-DITCH | PRODUCT SHAPE & SPECIFICATION t
t
W
H
H
C S S
D
D
Ls
B
Concrete Compressive Strength fc' = 28 MPa Type 300 300 300 300 400 400 400 400 500 500 500 500 500 600 600 600 600 600 800 800 800 800 800 1000 1000 1000 1000 1200 1200 1200 1200 1400 1400 1400 1400 1600 1600 1600 1600
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
200 300 400 500 300 400 500 600 300 400 500 600 700 400 500 600 700 800 600 700 800 1000 1200 800 1000 1200 1400 1000 1200 1400 1600 1200 1400 1600 1800 1400 1600 1800 2000
Dimension (mm)
Weight (kg/pcs)
(mm)
(W)
(H)
(B)
(C)
(D)
(t)
(s)
(Ls)
1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400 1200 / 2400
300 300 300 300 397 400 400 400 494 497 500 500 500 594 597 600 600 600 795 797 800 800 800 978 1000 1000 1000 1178 1200 1200 1200 1378 1400 1422 1444 1576 1600 1620 1642
200 300 400 500 300 400 500 600 300 400 500 600 700 400 500 600 700 800 600 700 800 1000 1200 800 1000 1200 1400 1000 1200 1400 1600 1200 1400 1600 1800 1400 1600 1800 2000
390 390 390 390 500 500 500 500 640 640 640 640 640 740 740 740 740 740 940 940 940 940 940 1180 1180 1180 1180 1390 1390 1390 1390 1620 1620 1620 1620 1840 1840 1840 1840
294 294 294 294 390 390 390 390 488 488 488 488 488 584 584 584 584 584 780 780 780 780 780 900 900 900 900 1080 1080 1080 1080 1260 1260 1260 1260 1440 1440 1440 1440
60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 100 100 100 100 105 105 105 105 150 150 150 150 170 170 170 170
45 45 45 45 52 50 50 50 73 72 70 70 70 73 72 70 70 70 73 72 70 70 70 101 90 90 90 106 95 95 95 121 110 99 88 132 120 110 99
40 40 40 40 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 100 100 100 100 100 100 100 100 120 120 120 120 150 150 150 150
40 40 40 40 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 100 100 100 100 100 100 100 100 120 120 120 120 150 150 150 150
L=1200 L=2400 131 159 187 215 216 247 278 310 284 327 369 413 457 352 396 438 483 527 488 532 574 664 754 974 1089 1227 1365 1266 1386 1536 1686 1877 2015 2141 2253 2431 2578 2720 2845
262 318 374 430 432 494 556 620 568 654 738 826 914 704 792 876 966 1054 976 1064 1148 1328 1508 1948 2178 2454 2730 2532 2772 3072 3372 3754 4030 4282 4506 4862 5156 5440 5690
HCS 320 50
yt
37 45
320
yb
35
1200
Table of Superimposed load (kN/m)
HCS Type 320.5. 6 - 09 320.5. 8 - 09 320.5.10 - 09 320.5.12 - 09 320.5.10 - 12 320.5.12 - 12
ØMn
ØVcw
kN.m 155.1 204.6 244.1 282.8 345.5 407.0
kN 103.2 104.9 103.6 103.1 98.2 100.0
4 4.5 23.9 21.0 24.4 21.3 24.0 21.0 23.9 20.9 22.6 19.8 23.1 20.2
5 18.6 18.9 18.6 18.6 17.5 17.9
5.5 16.6 16.9 16.7 16.6 15.7 16.0
6 15.0 15.3 15.0 15.0 14.1 14.4
HCS 320 (No Topping)
6.5 12.6 13.9 13.7 13.6 12.8 13.1
7 10.5 12.7 12.5 12.4 11.7 12.0
7.5 8.7 11.0 11.5 11.4 10.7 11.0
8 7.3 9.3 10.6 10.5 9.9 10.1
8.5 6.1 7.8 9.1 9.7 9.1 9.3
9 9.5 5.1 4.2 6.6 5.5 7.7 6.5 8.8 7.5 8.5 7.9 8.7 8.1
Span ]- [m] 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 3.4 4.6 3.9 3.2 5.5 4.7 4.0 3.3 6.5 5.5 4.7 4.0 3.4 7.3 6.6 5.7 4.9 4.2 3.6 3.1 7.5 7.0 6.6 6.1 5.5 4.8 4.2 3.6 3.1
15
15.5 16
HCS 320 + 50 (Topping 50mm)
HCS Type
ØMn
ØVcw
kN.m
kN
320.5. 6 - 09 164.8 320.5. 8 - 09 217.7 320.5.10 - 09 260.0 320.5.12 - 09 301.4 320.5.10 - 12 374.1 320.5.12 - 12 451.3
118.9 120.1 118.7 118.1 110.9 112.1
4
4.5
5
5.5
6
6.5
7
27.1 27.4 27.1 26.9 25.0 25.4
23.7 24.0 23.6 23.5 21.8 22.1
21.0 21.2 20.9 20.8 19.3 19.5
18.7 18.9 18.7 18.6 17.2 17.4
15.5 17.0 16.8 16.7 15.4 15.6
12.7 15.4 15.2 15.1 14.0 14.2
10.4 14.1 13.9 13.8 12.7 12.9
7.5
8
8.5 9
9.5
8.6 12.5 12.7 12.6 11.6 11.8
7.1 10.3 11.6 11.6 10.6 10.8
5.8 8.4 10.0 10.7 9.8 9.9
3.8 5.5 6.8 8.1 8.4 8.5
4.8 6.8 8.3 9.7 9.0 9.2
10
Span [m] 10.5 11 11.5
4.4 5.6 6.7 7.8 7.9
3.4 4.5 5.5 7.0 7.3
3.6 4.5 3.6 5.8 4.8 6.8 6.4
12
3.9 5.5
12.5
13 13.5
3.1 4.6 3.8
14 14.5
15
15.5 16
3.1
HCS 400 50 45
yt 50
400
yb 40
1200
Table of Superimposed load (kN/m)
HCS Type 400.5.10 - 09 400.5.12 - 09 400.5.14 - 09 400.5.10 - 12 400.5.12 - 12
ØMn
ØVcw
kN.m 267.8 329.2 389.4 459.0 546.5
kN 134.5 136.2 137.9 137.4 139.6
4 31.3 31.8 32.2 32.1 32.6
4.5 27.4 27.8 28.2 28.1 28.6
5 24.3 24.7 25.0 24.9 25.4
5.5 21.8 22.1 22.4 22.3 22.7
6 19.7 20.0 20.3 20.2 20.5
6.5 17.9 18.1 18.4 18.3 18.7
7 16.3 16.6 16.8 16.7 17.1
HCS 400 (No Topping) 7.5 15.0 15.2 15.5 15.4 15.7
8 13.8 14.1 14.3 14.2 14.5
8.5 12.0 13.0 13.2 13.2 13.4
9 9.5 10.3 8.9 12.1 11.2 12.3 11.4 12.2 11.4 12.5 11.6
Span [m] 10 10.5 11 7.6 6.6 5.7 10.2 8.9 7.8 10.7 10.0 9.4 10.6 9.9 9.3 10.9 10.2 9.5
11.5 4.9 6.8 8.4 8.8 9.0
12 12.5 13 13.5 4.2 3,6 6.0 5.1 4.4 3.7 7.3 6.4 5.6 4.8 8.2 7.6 6.7 5.9 8.4 8.0 7.5 7.1
14 14.5
15
15.5 16
3.1 4.2 5.1 6.6
3.1 3.9 5.2
3.3 4.6 4.0
3.6 4.5 5.8
HCS 400 + 50 (Topping 50mm)
HCS Type 400.5.10 - 09 400.5.12 - 09 400.5.14 - 09 400.5.10 - 12 400.5.12 - 12
ØMn
ØVcw
kN.m 282.7 346.5 409.1 483.3 576.5
kN 149.2 150.5 155.1 151.8 153.7
4 34.3 34.6 35.8 35.0 35.4
4.5 29.9 30.3 31.3 30.6 31.0
5 26.5 26.8 27.7 27.0 27.4
5.5 23.7 23.9 24.8 24.2 24.5
6 21.3 21.6 22.4 21.8 22.1
6.5 19.3 19.6 20.3 19.8 20.1
7 17.6 17.8 18.5 18.0 18.3
7.5 16.2 16.3 17.0 16.5 16.8
8 14.1 15.0 15.6 15.2 15.4
8.5 12.0 13.9 14.4 14.0 14.3
9 9.5 10.2 8.7 12.9 11.9 13.4 12.4 13.0 12.1 13.2 12.3
10 7.4 10.1 11.6 11.2 11.4
Span [m] 10.5 11 6.3 5.3 8.7 7.5 10.8 10.1 10.5 9.8 10.7 10.0
11.5 4.5 6.5 8.5 9.2 9.4
12 12.5 13 13.5 3.7 3.1 5.6 4.8 3.9 3.1 7.4 6.4 5.4 4.5 8.6 7.9 6.8 5.8 8.8 8.3 7.8 7.3
14 14.5
15
3.7 3.0 4.9 4.1 6.6 5.7
3.3 4.9
15.5 16
4.1 3.5
- ENGINEERING In order to respond to the customers’ needs Wika Beton is able to provide engineering services to review the design. The engineering softwares are always updated and the engineers are trained to keep up with the latest softwares. The engineering services are meant for design review so that the customers will get feed back whether their design is efcient enough. It is important as some of the products are customized and subject to the required design. - DELIVERY - INSTALLATION - CONSTRUCTION