© A. Calomarde, Edicions Virtuals
Transparencia 1-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
)tVLFDGHOHVWDGRVyOLGR &RQGXFFLyQ
(OHFWUyQLFD
(OHFWUyQLFD
&DUDFWHUtVWLFDVGHORV6HPLFRQGXFWRUHV • 6HPLFRQGXFWRULQWUtQVHFR60&SXUR6L*H*D$V – %DQGDGHYDOHQFLDHOHFWURQHV
• &DUDFWHUtVWLFDVD. – &DGDiWRPRHVWiURGHDGRGHHOHFWURQHVH – /RVHGHODEDQGDGHYDOHQFLDHVWiQFRPSDUWLGRVFRQORViWRPRV YHFLQRV – &DGDSDUGHHFRPSDUWLGRVIRUPDQXQHQODFHFRYDOHQWH – 7RGRVORVHHVWiQHQODEDQGDGHYDOHQFLD%9 +4
+4
+4
+4
+4
+4
+4
+4
+4
(VTXHPDELGLPHQVLRQDO 60&D.
© A. Calomarde, Edicions Virtuals
Transparencia 1-2
(OHFWUyQLFD
*HQHUDFLyQGHSDUHVHOHFWUyQKXHFR +4
+4
+4
+4
+4
+4
e-
h+ +4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
7!.
• $7!.HOHVDOWDDODEDQGDGHFRQGXFFLyQ • /DFRQGXFFLyQVHSURGXFLUiSRU – HHQODEDQGDGHFRQGXFFLyQ – KHQODEDQGDGHYDOHQFLD
w Nº de electrones en la BC = Nº de huecos en la BV © A. Calomarde, Edicions Virtuals
Transparencia 1-3
(OHFWUyQLFD
0RYLPLHQWRGHOKXHFR +4
+4
+4
+4
+4
+4
+4
+4
+4
+4
h+ +4
+4
h+ +4
+4
+4
+4
+4
+4
• 3XHGHFRQVLGHUDUVHHOPRYLPLHQWRGHOKGHELGRD ODWUDQVIHUHQFLDGHODLRQL]DFLyQDRWURiWRPRD FDXVDGHOVDOWRGHOH
© A. Calomarde, Edicions Virtuals
Transparencia 1-4
(OHFWUyQLFD
60&H[WUtQVHFRV • 60&LQWUtQVHFR60&FULVWDOLQRVLQLPSXUH]DV • 60&H[WUtQVHFR60&FULVWDOLQRHQHOTXHVHKDQ LQWURGXFLGRLPSXUH]DVGHXQDIRUPDFRQWURODGD
,PSXUH]DVJUXSR,,,60&WLSR3 %$O,Q*D 0D\RUQ~PHURGHKXHFRV³OLEUHV´
© A. Calomarde, Edicions Virtuals
,PSXUH]DVJUXSR960&WLSR1 3$V6E 0D\RUQ~PHURGHHOHFWURQHVHQ%&
Transparencia 1-5
(OHFWUyQLFD
60&H[WUtQVHFRV Tipo N
QHOHFWURQHVOLEUHV
Tipo P
+4
+4
+4
+4
+4
+4
+4
+5
+4
+4
+3
+4
+4
+4
+4
+4
+4
,RQL]DFLyQLPSXUH]DV5RWXUD
QHOHFWURQHVOLEUHV
+4 5RWXUDHQODFHVFRYDOHQWHV
HQODFHVFRYDOHQWHV QKXHFRVOLEUHV
5RWXUDHQODFHVFRYDOHQWHV
QKXHFRVOLEUHV
,RQL]DFLyQLPSXUH]DV5RWXUD HQODFHVFRYDOHQWHV
QHOHFWURQHVOLEUHV!QKXHFRVOLEUHV
QHOHFWURQHVOLEUHVQKXHFRVOLEUHV
© A. Calomarde, Edicions Virtuals
Transparencia 1-6
(OHFWUyQLFD
5HODFLyQHQWUHFRQFHQWUDFLRQHV HQHTXLOLEULRGHORVSRUWDGRUHV • /H\GHDFFLyQGHPDVDV » Q FRQFHQWUDFLyQGHHOHFWURQHVOLEUHVQHOHFWURQHVYROXPHQ » S FRQFHQWUDFLyQGHKXHFRVOLEUHVQKXHFRVYROXPHQ – $XQDWHPSHUDWXUDGDGDODJHQHUDFLyQGHSRUWDGRUHV\OD UHFRPELQDFLyQVHSURGXFLUiQDODPLVPDYHORFLGDG » /DVFRQFHQWUDFLRQHVQ\SVHPDQWHQGUiQFRQVWDQWHVHQHOWLHPSR – (QXQVHPLFRQGXFWRULQWULQVHFRWHQGUHPRV n = p = ni GRQGHQLHVODFRQFHQWUDFLyQGHH\KHQXQPDWHULDOLQWUtQVHFR 3XHGHGHPRVWUDUVHTXH
QL2 (7 ) = $ ⋅ 7 3 ⋅ H © A. Calomarde, Edicions Virtuals
− ( JR
.7
Transparencia 1-7
(OHFWUyQLFD – 3DUDHO*H\HO6L
QL2 (7 ) = 3,1 ⋅1032 ⋅ 7 3 ⋅ H −9100 / 7 FP −6 *H QL2 (7 ) = 1,5 ⋅1033 ⋅ 7 3 ⋅ H −14000 / 7 FP −6 6L
– 3XHGHGHPRVWUDUVHTXHSDUDFXDOTXLHUVHPLFRQGXFWRUVH FXPSOHODUHODFLyQ
Q ⋅ S = Q 2 (7 ) L
– TXHHVOD/(<'($&&,Ï1'(0$6$6
© A. Calomarde, Edicions Virtuals
Transparencia 1-8
(OHFWUyQLFD
/H\GHQHXWUDOLGDGGHFDUJD • 1RVLQGLFDTXHODFDUJDQHWDHQXQFULVWDOHVQXOD – $VtVLVXSRQHPRV { ND&RQFHQWUDFLyQGHGRQDGRUHV(Donadores/volumen). { NA&RQFHQWUDFLyQGHDFHSWDGRUHV(Aceptadores/volumen). { n\pFRQFHQWUDFLyQGHe-\h+. – 7HQHPRVTXH Total carga positiva = total carga negativa.
1' + S = 1 $ + Q
© A. Calomarde, Edicions Virtuals
Transparencia 1-9
(OHFWUyQLFD
• $VtWHQHPRV – 6LND >> NAHQWRQFHVn >> p60&WLSRQ
Q2 Q ≈ 1 ' S ≈ L 1' 6LNA >> NDHQWRQFHVp >> n60&WLSRS
S ≈ 1 $ Q ≈
QL2 1$
© A. Calomarde, Edicions Virtuals
Transparencia 1-10
(OHFWUyQLFD
&RQGXFWLYLGDGHQ60& V
E A
L
– 6yOLGRHQHOTXHH[LVWHQHOLEUHVREHGHFHQDXQFDPSRHOpFWULFR – /RVHOLEUHVVHPXHYHQFRQXQDYHORFLGDGPHGLDSURSRUFLRQDODOFDPSR (OpFWULFR
YGULIWα (
/ODPDUHPRVµPRYLOLGDGHQcm2/V·s DODFRQVWDQWHGHSURSRUFLRQDOLGDG
YGULIW = µ ( © A. Calomarde, Edicions Virtuals
Transparencia 1-11
(OHFWUyQLFD – /DFRUULHQWHHVPRYLPLHQWRGHFDUJDVSRUXQLGDGGHWLHPSR
,≡
&DQWLGDG GHFDUJD T (Q ⋅ YROXPHQ ) T (Q ⋅ $ ⋅ / ) = = = T ⋅ Q ⋅ $ ⋅ YGULIW W W W
<ODGHQVLGDGGHFRUULHQWH
-=
, 9 = T ⋅ Q ⋅ YGULIW = T ⋅ Q ⋅ µ H ⋅ ( = T ⋅ Q ⋅ µ H ⋅ $ /
/DGHQVLGDGGHFRUULHQWHHVSURSRUFLRQDOD /DGHQVLGDGGHFDUJD /DPRYLOLGDGGHORVSRUWDGRUHV
6LUHODFLRQDPRVHOUHVXOWDGRDQWHULRUFRQODOH\GH2KP, 95
5= <FRPSDUDQGRFRQ 5 = ρ
/ $
1 / T ⋅ Q ⋅ µH $
WHQHPRVTXH
ρ=
1 1 ≡ T ⋅ Q ⋅ µH σ
© A. Calomarde, Edicions Virtuals
Transparencia 1-12
(OHFWUyQLFD – 3DUDREWHQHUODFRQGXFWLYLGDGHQXQVHPLFRQGXFWRUWHQGUHPRV TXHWHQHUHQFXHQWDODFRQGXFWLYLGDGGHKXHFRV\HOHFWURQHV » σH= conductividad del electrón. » σK= conductividad del hueco. – $VLPLVPRSDUDODPRYLOLGDG » µH= movilidad del electrón. » µK= movilidad del hueco. – 3RUORTXHSRGUHPRVHVFULELUSDUDXQVHPLFRQGXFWRU
- = (σ H + σ K )( - = T (Qµ H + µ K )(
– $VtODFRQGXFWLYLGDGHQXQVHPLFRQGXFWRUVHUi
σ = T(Qµ H + µ K )
– 3DUDORV60&PiVXWLOL]DGRV
µ = 2,1 ⋅109 7 − 2, 5 6LOLFLR H 9 −2, 7 µ H = 2,3 ⋅10 7
µ = 4,9 ⋅10 7 7 −1, 66 *HUPDQLR H 9 − 2 , 33 µ H = 1,05 ⋅10 7 © A. Calomarde, Edicions Virtuals
para 160º . < 7 < 400º . para 150º . < 7 < 400º . para 100º . < 7 < 300º . para 125º . < 7 < 300º . Transparencia 1-13
(OHFWUyQLFD
'HQVLGDGGH&RUULHQWHWRWDOHQXQ60& • ([LVWHQPHFDQLVPRVGHFRUULHQWHHQXQ60& – $ 'HQVLGDGGHFRUULHQWHGHGLIXVLyQ n
Corriente de difusión
x
δQ δ[ = T ⋅ gradQ ⋅ 'Q
- GLI α − - GLI ,Q
- GLI , S = − T ⋅ gradS ⋅ ' S – 'RQGHDn\DpVRQORVFRHILFLHQWHVGHGLIXVLyQGHORV HOHFWURQHV\KXHFRV © A. Calomarde, Edicions Virtuals
Transparencia 1-14
(OHFWUyQLFD – % 'HQVLGDGGHFRUULHQWHGHDUUDVWUH
- GULIW = T(Qµ H + Sµ K )( <ODFRUULHQWHWRWDOHQXQ60&VHUiODVXPDGHORVGRVWpUPLQRV
- 727$/ = - GULIW + - GLI
- 727$/ = T (Qµ H + Sµ K )( + T (grad Q ⋅ 'Q − grad S ⋅ ' S ) <SDUDHOFDVRXQLGLPHQVLRQDO
δS δQ - 727$/ = T (Qµ H + Sµ K )( + T 'Q − ' S δ[ δ[
© A. Calomarde, Edicions Virtuals
Transparencia 1-15
(OHFWUyQLFD
5HODFLyQGH(LQVWHLQ • 6HFXPSOHTXH 'Q = µ Q97
' S = µ S97 – 'RQGH
.7 (tensión termodinámica) T K = 1,38 ⋅10 -23 -RXO ⋅ VHJ (constante de Boltzman)
97 =
q = 1,6 ⋅10-19 & (carga del electrón) © A. Calomarde, Edicions Virtuals
Transparencia 1-16
(OHFWUyQLFD
(FXDFLyQGH%ROW]PDQSDUDSRUWDGRUHV • 3HUPLWHUHODFLRQDUFRQFHQWUDFLyQGHSRUWDGRUHV\ SRWHQFLDOHV – 3DUWLPRVGHXQ60&VLQH[FLWDFLyQH[WHULRU\FRQXQD FRQFHQWUDFLyQGHSRUWDGRUHV n
x1
x2
/DFRUULHQWHWRWDOGHHOHFWURQHVHQHO60&HVFHURSRUORTXH
Tµ Q Q( + T © A. Calomarde, Edicions Virtuals
δQ ' =0 δ[ Q Transparencia 1-17
(OHFWUyQLFD –(VGHFLU
Tµ Q Q( = − T
δQ ' δ[ Q
– 7HQLHQGRHQFXHQWDODUHODFLyQGH(LQVWHLQ
( = −97
1 δQ Q δ[
4XHHVSUHFLVDPHQWHHOFDPSRHOpFWULFRTXHVHRSRQHDODGLIXVLyQ GHHOHFWURQHV\PDQWLHQHn(x)FRQVWDQWHHQHOWLHPSRHQFDGDSXQWR 3RUODOH\GH*DXVVSDUDXQDGLPHQVLyQ
−
δ9 1 δQ = −97 δ[ Q δ[
2SHUDQGR
δ9 = 97
δQ Q
© A. Calomarde, Edicions Virtuals
Transparencia 1-18
(OHFWUyQLFD – (VGHFLUHQWUHORVSXQWRVx1\x2ODGLIHUHQFLDGHSRWHQFLDOVHUi
∫
2
1
∂9 = 97 ∫
2
1
∂Q Q
6L9\9VRQORVSRWHQFLDOHVGH[\[HQWRQFHV
92 − 91 = 97 ln
Q2 Q1
2PiVKDELWXDOPHQWH
Q1 = Q2 ⋅ H
91 −92 97
<SDUDORVKXHFRV
S2 = S1 ⋅ H © A. Calomarde, Edicions Virtuals
91 −92 97 Transparencia 1-19
(OHFWUyQLFD
5HVXPHQ – 3ULQFLSDOHVVHPLFRQGXFWRUHV6L*H*D$V – &RUULHQWHVJHQHUDGDVSRUHOHFWURQHV\KXHFRV – 7UHVWLSRVGHVHPLFRQGXFWRUHV » 6HPLFRQGXFWRULQWUtQVHFRn = p = ni » 6HPLFRQGXFWRUH[WUtQVHFRWLSRQn >> p » 6HPLFRQGXFWRUH[WUtQVHFRWLSRSp >> n – 5HODFLyQHQWUHSRUWDGRUHV
Q ⋅ S = QL2 (7 )
1' + S = 1$ + Q –&RUULHQWHVHQXQ60& »3RUDUUDVWUHSURYRFDGDSRUHOFDPSRHOpFWULFR »3RUGLIXVLyQSURYRFDGDSRUODGLIHUHQFLDGHFRQFHQWUDFLRQHV
© A. Calomarde, Edicions Virtuals
Transparencia 1-20
© A. Calomarde, Edicions Virtuals
Transparencia 2-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
8QLyQ31
(OHFWUyQLFD
(OHFWUyQLFD
8QLyQ31VLQSRODUL]DU 1'1$ =RQD3
=RQD1
&RQFHQWUDFLyQGH LPSXUH]DV
[
QQ
SS QS
&RQFHQWUDFLyQGH SRUWDGRUHVDQWHV GHODXQLyQ
SQ [
KXHFRVPD\RULWDULRV HOHFWURQHVPLQRULWDULRV
HOHFWURQHVPD\RULWDULRV KXHFRVPLQRULWDULRV
© A. Calomarde, Edicions Virtuals
Transparencia 2-2
(OHFWUyQLFD V R L U D W L U R X \ I D L ' P H G Q y L V
Q
[
H G H U W V D U U $
[
[
V R L U D W L U R Q L P
[
Q
Q
S
2
9
[
ρ
H
ω
Q
ω
Q
$
1 T
[ (
0
(
'
[ 9
1 T
S
S
S
ω
S
ω
S
ω
K
ω
ω
Q
ω
Q
S
S
Q
H G O L I U H 3
R G D S R '
© A. Calomarde, Edicions Virtuals
H G G D G L V
D W H Q D Q J H U D ' F
R S P D &
R F L U W F p O
(
O D L F Q H W
R 3
Transparencia 2-3
(OHFWUyQLFD
'HQVLGDGGHFDUJD –3XHGHDGPLWLUVHTXHODVFDUJDVHQOD]RQD1VRQ ρ(x) = q [ND(x) - nn(x)] –<HQORVSXQWRVTXHQQ[ 1'[ ρ(x) ≅ q ND(x) –<SDUDOD]RQD3 ρ(x) ≅ - q NA(x) –(VWDDSUR[LPDFLyQHVFRQRFLGDFRPRODDSUR[LPDFLyQGH9DFLDPLHQWRYiOLGD HQWRGDOD]FHH[FHSWRHQORVERUGHV\SXHGHDSOLFDUVHGHELGRDOD SUHVHQFLDGHOFDPSRHOpFWULFRHQHVWD]RQDTXHSURYRFDUiTXHFXDOTXLHU FDUJDPyYLOVHDH[SXOVDGDGHOD]FH –3XHVWRTXHODEDUUD60&GHEHVHUWRWDOPHQWHQHXWUDVHFXPSOLUiTXH q ωn ND = q ωp NA
© A. Calomarde, Edicions Virtuals
Transparencia 2-4
(OHFWUyQLFD
&DPSR(OpFWULFR – 3DUDREWHQHUORVHDSOLFDUiODOH\GH*DXVVHQXQDGLPHQVLyQ
( ( [) = 1 ∫ ρ ( [)G[ ε
– 2EWHQLHQGRSDUDOD]RQD1\]RQD3 Zona P ⇒ (3 ( [ ) = −
T1 $
Zona N ⇒ (1 ( [) = −
ε
([ + ω 3 )
T1 ' (ω − [ ) 1 ε
– &RLQFLGLHQGRVXYDORUPi[LPRHQ[
(0 = − T1 $ ω 3 = − T1 ' ω 1 ε
ε
– <VLω = ωp + ωnHQWRQFHV (0 = − © A. Calomarde, Edicions Virtuals
T 1 $1' ω ε 1 $ + 1' Transparencia 2-5
(OHFWUyQLFD
3RWHQFLDOGHFRQWDFWR – $WHQLHQGRDODHFXDFLyQGH%ROW]PDQQ TXHQRVGDODGLIHUHQFLDGHSRWHQFLDOHQ XQ60&HQIXQFLyQGHODVFRQFHQWUDFLRQHV GHSRUWDGRUHV 92 − 91 = −97 ln
Q
S1 S2
[
[
–3XHGHDSOLFDUVHHQODXQLyQ31SDUDREWHQHUHOSRWHQFLDO
91 − 93 = −97 ln
S SQ0 = 9 ln S 0 S S 0 7 SQ0
–$SOLFDQGROD/H\GHDFFLyQGHPDVDV
S Q = Q2 QR
QR
S =
L
QR
Q2 Q L
QR
© A. Calomarde, Edicions Virtuals
Transparencia 2-6
(OHFWUyQLFD – <VXVWLWX\HQGR
S Q 91 − 93 = 97 ln S 02 Q 0 QL –<DGPLWLHQGRTXHVRQYiOLGDVODVDSUR[LPDFLRQHVpp0≅NAnno≅1' 91 − 93 = 97 ln
1 $1' QL2
– 3XHGHREWHQHUVHWDPELpQHOSRWHQFLDODSDUWLUGHOFDPSR HOpFWULFR
93 ( [) = T1 $ ( [ + ω 3 )2 ε
91 ( [) = T1 ' [ω 1 (ω 3 + ω 1 ) − (ω 1 − [ )2 ] ε
92 = T1 $ω 3 ω = T1 'ω 1 ω 2ε
© A. Calomarde, Edicions Virtuals
2ε
Transparencia 2-7
[
(OHFWUyQLFD
$QFKRGHOD]RQDGHFDUJDHVSDFLDO – 3DUDREWHQHUHODQFKRGHOD]FHVHSXHGHREVHUYDUTXH
92 = 1 (− (0 )ω 2
– <VXVWLWX\HQGRHOYDORUGHEM
90 = T 1 $ 1 ' ω 2 2ε 1 $ + 1 ' – <GHVSHMDQGRω
ω=
1 $ + 1' 9 T 1 $1' 0
2ε
© A. Calomarde, Edicions Virtuals
Transparencia 2-8
(OHFWUyQLFD
&DUDFWHUtVWLFD7HQVLyQ&RUULHQWH • 3DUDODREWHQFLyQGHODFDUDFWHUtVWLFD9,VXSRQGUHPRV – (QOD]FHQRH[LVWHQLJHQHUDFLyQQLUHFRPELQDFLyQ – ,Q\HFFLyQGHSRUWDGRUHVGpELOVyORYDUtDQODVFRQFHQWUDFLRQHVGH PLQRULWDULRV – 7RGRHOSRWHQFLDOH[WHUQRDSOLFDGRDSDUHFHHQOD]FH\QRHQODV ³]RQDVQHXWUDV´
• 'RVWLSRVGHSRODUL]DFLRQHV – 'LUHFWD ÍVP > VN – ,QYHUVDÍVN > VP
© A. Calomarde, Edicions Virtuals
Transparencia 2-9
(OHFWUyQLFD
3
9 )
1
S S 1 $
QQ
H
K
SQ[
QS[
Q S
1'
[S
SQ
[Q
– ([LVWHXQDLQ\HFFLyQGHSRUWDGRUHVPLQRULWDULRVHQ-xp\xn /RV PD\RULWDULRVQRVHYHUiQPRGLILFDGRVHQGpELOLQ\HFFLyQ – 'HELGRDHVWDLQ\HFFLyQGHSRUWDGRUHVDSDUHFHXQJUDGLHQWHGH SRUWDGRUHVPLQRULWDULRV
∂Q S ( [ ) ∂[
≠0
© A. Calomarde, Edicions Virtuals
Transparencia 2-10
(OHFWUyQLFD – <ODGHQVLGDGGHFRUULHQWHGHGLIXVLyQHVSURSRUFLRQDODO JUDGLHQWH
∂S ( [) ∂Q( [) - GLII = - GLI , S + - GLI , Q = T − '3 + '1 ∂[ ∂[ – 3DUDFRQRFHUHOJUDGLHQWHXWLOL]DUHPRVOD³(FXDFLyQGH &RQWLQXLGDG´SDUWLFXODUL]DGD
∂SQ ( [, W ) ∂ 2 S ( [ , W ) SQ ( [ ) − SQ 0 = '3 − ∂W ∂[ 2 τ3 – 'RQGHτHVHOWLHPSRGHYLGDPHGLRGHORVSRUWDGRUHV – <VXSRQLHQGRFRQGLFLRQHVHVWDFLRQDULDV9 FWH )
'3
∂ S ( [ , W ) SQ ( [ ) − SQ 0 − =0 ∂[ 2 τ3 2
– /DVFRQGLFLRQHVGHFRQWRUQRVRQ
Q2 a) Para [ → ∞ SQ ( [) = SQ 0 = L 1' b) Para [ = x n ; SQ ( [Q )
© A. Calomarde, Edicions Virtuals
Transparencia 2-11
(OHFWUyQLFD » 3DUDREWHQHUODFRQGLFLyQXWLOL]DPRVODHFXDFLyQGH %ROW]PDQQ
En equilibrio : S 92 = 97 ln S 0 SQ 0 92
S S 0 = SQ 0H 97 Fuera de equilibrio :
92 −9 )
S S 0 = SQ ( [)H 97
» $OWHQHUGpELOLQ\HFFLyQHQDPERVFDVRVpp0 FRLQFLGLUi
SQ 0H
90 97
= SQ ( [ )H
90 −9 ) 97
9)
SQ ( [Q ) = SQ 0H 97
⇒£££(VWDPRVLQ\HFWDQGR SRUWDGRUHVGHIRUPD H[SRQHQFLDOFRQOD
© A. Calomarde, Edicions Virtuals
VF
Transparencia 2-12
(OHFWUyQLFD – &RQODVGRVFRQGLFLRQHVUHVROYHPRVODHFGLIHUHQFLDO
9) − ( [ − [Q ) SQ ( [ ) = SQ 0 + SQ H 97 − 1H /3 – 6LHQGRODORQJLWXGGHGLIXVLyQGHORVKXHFRV /3 = '3τ 3 – $KRUDSRGHPRVFRQRFHUODFRUULHQWHGHGLIXVLyQGHORVKXHFRV
- GLI , S ( [Q ) = −T'3 ∂S( [) ∂[ [ = [
= Q
T'3 SQ0 H99 /3
)
7
− 1
– $QiORJDPHQWHSDUDORVHOHFWURQHV
- GLI , Q ([ S ) = T'1 ∂Q( [) ∂[ [ = [
© A. Calomarde, Edicions Virtuals
= S
T'1 Q S0 99 H /1
)
7
− 1
Transparencia 2-13
(OHFWUyQLFD – 6LUHFRUGDPRVTXHQRKD\QLUHFRPELQDFLyQQLJHQHUDFLyQHQOD ]FHWHQGUHPRVTXHODFRUULHQWHHVFRQVWDQWHHQHOOD\DVt WHQGUHPRV -
-
7
- 7
- -
1', ))
7
-
3', ))
-
1', ) )
3' ,))
[ 1
[ 3
[
[
3
[
1
© A. Calomarde, Edicions Virtuals
Transparencia 2-14
(OHFWUyQLFD – $VtODVXPDGHORVGRVWpUPLQRVPHGDUiODFRUULHQWHWRWDO
9) T'1 Q S 0 T'3 SQ 0 97 + ,7 = $- 7 = $ H − 1 /3 /1 IS ,
,6 9
© A. Calomarde, Edicions Virtuals
Transparencia 2-15
(OHFWUyQLFD
0RGHORGLQiPLFRGHO'LRGR • 6H KD REWHQLGR OD FDUDFWHUtVWLFD I-V EDMR FRQGLFLRQHV HVWiWLFDV SHUR EDMR FRQGLFLRQHV GLQiPLFDV DSDUHFHQ WUHV HIHFWRVQRFRQVLGHUDGRVKDVWDDKRUD • D &DSDFLGDGGHWUDQVLFLyQCJ – 3URYRFDGDSRUODYDULDFLyQGH]FHDOYDULDUODWHQVLyQHQODXQLyQ
ρ[
[
© A. Calomarde, Edicions Virtuals
Transparencia 2-16
(OHFWUyQLFD – /DYDULDFLyQGHFDUJDFXDQGRVHDSOLFDXQDWHQVLyQ9-VHUi
T (9 ) = 4 Y
-
-
(0) + 4- (9- )
– 7HQLHQGRHQ – 3RODUL]DFLyQGLUHFWDqV(VJ) > 0, VJ > 0 – 3RODUL]DFLyQLQYHUVDqV(VJ) < 0, VJ < 0 – 3RUORTXHODFDUJDPyYLODOPDFHQDGDHQODV]RQDVQHXWUDV DXPHQWDUiDODXPHQWDUODWHQVLyQ9-\ODFDSDFLGDGGH WUDQVLFLyQVHUi
&- = GT9 (9- ) G9– &RPRQJ(0) = cteWHQGUHPRVTXH &- = −
© A. Calomarde, Edicions Virtuals
G4- (9- ) G9-
Transparencia 2-17
(OHFWUyQLFD – 3DUDHOORODFDUJDWRWDOHQHOODGR1GHOD]FHFRQXQDWHQVLyQ 9-VHUi
4- = $T1 'ω 1 = $T1 ' $T
1$ ω= 1 $ + 1'
1 $ 1 ' 2ε 1 1 (92 − 9 ) + 1 $ + 1 ' T 1 $ 1 '
1
2
– <VLGHULYDPRVUHVSHFWRDVREWHQGUHPRVCJ &- = − G4- = $T 1 $ 1 ' 2ε 1 $ + 1 ' 2ε 1 + 1 (92 − 9 ) G9 2 1 $ + 1 ' T 1 $ 1 ' T 1 $ 1 '
&- = $
1
2
ε 2ε 1 1 (92 − 9 ) + T 1 $ 1 '
© A. Calomarde, Edicions Virtuals
Transparencia 2-18
(OHFWUyQLFD – <FRPRHOGHQRPLQDGRUHVω
&- = $
ε ω
•E &DSDFLGDGGHGLIXVLyQ – 'HELGDDODYDULDFLyQGHODVFRQFHQWUDFLRQHVGHSRUWDGRUHVHQ ODV]RQDVQHXWUDVDOSRODUL]DUODXQLyQ QS
[
© A. Calomarde, Edicions Virtuals
Transparencia 2-19
(OHFWUyQLFD – 3XHGHGHPRVWUDUVHTXHHVWDFDSDFLGDGVLJXHXQDOH\GHOWLSR 9
&' = .H97 – /DFXDODXPHQWDWDPELpQFRQODWHQVLyQDSOLFDGDSHURDXQ ULWPRVXSHULRUVLHQGRpVWD~OWLPDSUHGRPLQDQWHHQ SRODUL]DFLyQGLUHFWD\HQSRODUL]DFLyQLQYHUVDODFDSDFLGDGGH WUDQVLFLyQ
&' &-
9 © A. Calomarde, Edicions Virtuals
Transparencia 2-20
(OHFWUyQLFD
• F 5HVLVWHQFLDGLQiPLFD – &RQVLGHUDUHPRVODUHVLVWHQFLDGLQiPLFDFRPR
UG =
G9 G, 4
,
,&
4
UG =
9&
9
1 G9 = WDQψ G, 4
Ψ
© A. Calomarde, Edicions Virtuals
Transparencia 2-21
(OHFWUyQLFD – $VtHOYDORUGHODUHVLVWHQFLDGLQiPLFDSXHGHGHGXFLUVHDSDUWLU GHODH[SUHVLyQGHODFRUULHQWHHQODXQLyQ 9
1 G, , = = 6 H97 UG G9 4 97 – 3RUORTXH
UG
97
=
,6H
9 97
97
= ,
+ ,6H
9 97
≈
97
si 9 >> 97
,
© A. Calomarde, Edicions Virtuals
Transparencia 2-22
(OHFWUyQLFD
0HFDQLVPRVGHUXSWXUD • $ODXPHQWDUODWHQVLyQLQYHUVDGHSRODUL]DFLyQ OOHJDXQSXQWRHQHOFXDOODFRUULHQWHDXPHQWDXQ HOHYDGRLQFUHPHQWRGHELGRDGRVPHFDQLVPRV , GLIHUHQWHV – (IHFWR]HQHU – (IHFWRDYDODQFKD
9= 9
© A. Calomarde, Edicions Virtuals
Transparencia 2-23
(OHFWUyQLFD – 5XSWXUD]HQHU » 3UHGRPLQDHQGLRGRVFRQWHQVLyQGHUXSWXUDEDMD » 3URGXFLGRHQXQLRQHVGRQGHORVGRSDGRVVRQHOHYDGRVORV FXDOHVSURGXFHQXQHOHYDGRFDPSRHOpFWULFRTXHHVFDSD] GHDUUDQFDUHOHFWURQHVGHORVHQODFHVFRYDOHQWHVHQOD]FH » 6HGHPXHVWUDTXHVHSURGXFHSDUDWHQVLRQHVTXHFXPSOHQ VZ ≤ 4Ego/q – 5XSWXUDDYDODQFKD » 3UHGRPLQDHQGLRGRVFRQWHQVLyQGHUXSWXUDDOWD » 3URGXFLGRSRUODDFHOHUDFLyQGHORVHHQOD]FHGHELGRD ODSUHVHQFLDGHOFDPSRHOpFWULFR/DHQHUJtDFLQpWLFDTXH DGTXLHUHQODHPSOHDQSDUDLRQL]DUSRULPSDFWRiWRPRVGHOD ]FHJHQHUDQGRQXHYRVSRUWDGRUHVTXHVHDFHOHUDQDVX YH]GDQGROXJDUDXQHIHFWRPXOWLSOLFDWLYR » 6HGHPXHVWUDTXHVHSURGXFHSDUDWHQVLRQHVTXHFXPSOHQ VZ ≥ 6Ego/q
Ego= Energía del gap
© A. Calomarde, Edicions Virtuals
Transparencia 2-24
(OHFWUyQLFD
&RQFOXVLRQHV • 8QLyQ31'LVSRVLWLYRIRUPDGRSRUXQH[WUHPRSRU 60&WLSR1\HQHORWUR60&WLSR3 • $SDUHFHQHQODXQLyQPHFDQLVPRVGH – – – –
'LIXVLyQGHPD\RULWDULRV 'HQVLGDGGHFDUJDQRQXOD &DPSRHOpFWULFRTXHSURYRFDDUUDVWUHGHPLQRULWDULRV 3RWHQFLDOGHFRQWDFWR
• 6XFDUDFWHUtVWLFD,9HV ,'
9' = , 6 H 97 − 1
– &RQXQDIXHUWHGHSHQGHQFLDGHODFRUULHQWHFRQODWHPSHUDWXUD © A. Calomarde, Edicions Virtuals
Transparencia 2-25
(OHFWUyQLFD
• (QUpJLPHQGLQiPLFRDSDUHFHQWUHVHIHFWRV – &DSDFLGDGGHWUDQVLFLyQ – &DSDFLGDGGHGLIXVLyQ – 5HVLVWHQFLDGLQiPLFD
• &RQWHQVLRQHVLQYHUVDVHOHYDGDVDSDUHFHHO HIHFWR]HQHURDYDODQFKD • $SDUWLUGHDKRUDOHGHQRPLQDUHPRV',2'2\VX UHSUHVHQWDFLyQHVTXHPiWLFDVHUi
© A. Calomarde, Edicions Virtuals
]RQD3
]RQD1
È12'2
&È72'2
Transparencia 2-26
© A. Calomarde, Edicions Virtuals
Transparencia 3-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
7UDQVLVWRU%LSRODU
(OHFWUyQLFD
(OHFWUyQLFD
,QWURGXFFLyQ • 'LVSRVLWLYREDVDGRHQGRVXQLRQHV31 – WLSRV Unión Emisora Emisor
Unión Emisora
Unión Colectora
P
N
Emisor
P
Unión Colectora
N
Base
P
N
Colector
Base
BJT PNP
BJT NPN Colector
Colector Base
Base
Emisor
Emisor © A. Calomarde, Edicions Virtuals
Transparencia 3-2
(OHFWUyQLFD
3RODUL]DFLRQHV • ([LVWLUiQWLSRVGHSRODUL]DFLyQ 3RODUL]DFLyQ 6DWXUDFLyQ $FWLYD $FWLYDLQYHUVD &RUWH
8QLyQHPLVRUD 'LUHFWD 'LUHFWD ,QYHUVD ,QYHUVD
8QLyQ&ROHFWRUD 'LUHFWD ,QYHUVD 'LUHFWD ,QYHUVD
• 7HQVLRQHV\FRUULHQWHVHQSRODUL]DFLyQDFWLYD VBC
VCB IC
IB
VEB
© A. Calomarde, Edicions Virtuals
IC IB
IE
VEC VBE
IE
VCE
Transparencia 3-3
(OHFWUyQLFD
3RODUL]DFLyQHQDFWLYD • (OHPLVRUVXHOHHVWDUDOWDPHQWH GRSDGR\ODEDVHVXHOHVHUHVWUHFKD
p+
n++
n
» 2EWHQHPRVXQDLQ\HFFLyQGHSRUWDGRUHV HQHOFROHFWRUSURYHQLHQWHVGHOHPLVRU GHELGRDODJUDQGLIXVLyQGHSRUWDGRUHV PLQRULWDULRVHQODEDVH e
-
0 ωE
ωB
© A. Calomarde, Edicions Virtuals
ωC
Transparencia 3-4
(OHFWUyQLFD
&RUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
ICP
IE
IC IEP-ICP IEN
IBB
ICN
IB
r r r r r
IEP&RUULHQWHGHKXHFRVHQHOHPLVRU IEN&RUULHQWHGHHOHFWURQHVHQHOHPLVRU ICP&RUULHQWHGHKXHFRVHQHOFROHFWRU ICN&RUULHQWHGHHOHFWURQHVHQHOFROHFWRU IBB+XHFRVUHFRPELQDGRVHQODEDVH IE =IEP + IEN IC =ICP + ICN IBB =IEP - ICP
© A. Calomarde, Edicions Virtuals
Transparencia 3-5
(OHFWUyQLFD
'HQVLGDGGHSRUWDGRUHVPLQRULWDULRV • %DVH – $SDUWLUGHODFRUULHQWHGHGLIXVLyQ GHPLQRULWDULRV 2 '3 δ S2 Q − SQ − SQ0 = 0 τS δ[ –/DFXDOWHQGUiXQDVROXFLyQGHOWLSR SQ ( [ ) = SQ 0 + F1H
[
/S
+ F2 H
−[
B
E
ω
0
-XE
C
XC
ωB
/S
–4XHFRQODVVLJXLHQWHVFRQGLFLRQHVGHFRQWRUQR 9 S (0 ) = S H (% 97 Q0 Q SQ (ω ) = 0 –6HREWLHQH 9(%
SQ ( [ ) = SQ 0H
97
[ ω − [ VLQK VLQK / /3 3 + SQ 0 1 − − 1 ω ω VLQK / VLQK / 3 3
© A. Calomarde, Edicions Virtuals
Transparencia 3-6
(OHFWUyQLFD
'HQVLGDGGHSRUWDGRUHVPLQRULWDULRV – 3XHGHQGLIHUHQFLDUVHGRVFDVRV ω / >>&RPSRUWDPLHQWRH[SRQHQFLDO 3 ω <<&RPSRUWDPLHQWRUHFWLOtQHR /3 (QHOFDVRGHFRPSRUWDPLHQWRUHFWLOtQHR
9 (% [ [ 9 = SQ2H 7 1 − ω ω – 4XHHVHOFDVRPiVKDELWXDOHQHO%-7
Q ( [ ) = SQ (0)1 −
S
• (PLVRU
(
)
[ [( Q( ( [ = − [( ) = Q(2H (% 97 9 (% /1( 9 Q( ( [ ) = Q(2 + Q(2 H 7 − 1 H Q( ( [ → ∞ ) = Q(2 9
© A. Calomarde, Edicions Virtuals
+
Transparencia 3-7
(OHFWUyQLFD
'HQVLGDGGHSRUWDGRUHVPLQRULWDULRV – &ROHFWRU
Q ( [ = [ ) = Q H ( &2 & Q& ( [ → ∞ ) = Q&2
− 9&%
97
[ [ −/ & ≈ 0 1& Q& ( [ ) = Q&2 − Q&2H −
– $SDUWLUGHODVFRQFHQWUDFLRQHVGHPLQRULWDULRVVHSRGUiQ REWHQHUODVFRUULHQWHVGHOWUDQVLVWRUELSRODU
© A. Calomarde, Edicions Virtuals
Transparencia 3-8
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
ICP
IE
IC IEP-ICP IEN
IBB
ICN
IB
w IEP ∂S , (3 = $− T'3 Q ∂[ , (3
= [ =0
ω 9(% 97 SQ 0 1 = $T'3 − 1 + coth H ω /S /3 cosh /3
© A. Calomarde, Edicions Virtuals
Transparencia 3-9
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 – 7HQLHQGRHQFXHQWDTXH 6L
1 ω << 1 \VDELHQGRTXHFRWK\ = ≈ SDUD \ << /3 WDQ\ \
– 7HQHPRVTXH
, (3 = T$'3 , (3 =
QL2 1 /3 9(% 97 − 1 + 1 H 1 % /3 ω
T$'3 QL2 9(% 97 T$'3 QL2 − 1 + H 1 %ω 1 %ω
© A. Calomarde, Edicions Virtuals
Transparencia 3-10
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
ICP
IE
IC IEP-ICP IEN
IBB
ICN
IB
w ICP ∂S , &3 = $T'3 Q = [ ∂ [ =ω S , &3 = $T'3 Q0 /S
© A. Calomarde, Edicions Virtuals
9(% 97 ω 1 − 1 + cosh H ω /3 VLQK /3
Transparencia 3-11
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 – 7HQLHQGRHQFXHQWDTXHVLω/LP
, &3 =
T$'3 QL2 9(% 97 T$'3 QL2 − 1 + H 1 %ω 1 %ω
– 3XHGHREVHUYDUVHTXHHVSUiFWLFDPHQWHHOYDORUGHIEP
© A. Calomarde, Edicions Virtuals
Transparencia 3-12
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
ICP
IE
IC IEP-ICP IEN
ICN
IBB
IB
w IEN
(
T$'1( Q(2 H , (1 = − $T'1( ∂Q( ( [) = ∂ [ /1( = − [ [
9(%
97
)
−1
(
w ICN T$'1& Q&2 , (1 = $T'1& ∂Q& ( [) = [ /1(& ∂ = − [ [ &
© A. Calomarde, Edicions Virtuals
Transparencia 3-13
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
IE
ICP IC IEP-ICP IEN
IBB
ICN
IB
w IE
(
, ( = , (3 + , (1 = D11 H
• 'RQGH
9(%
97
)
− 1 + D12
'3 SQ 0 ω ' Q ' Q2 ' Q coth + 1( ( 0 ≅ T$ 3 L + 1( ( 0 D11 = T$ /1 0 /1 0 /3 1 %ω /3 ' Q2 1 D = T$ '3 SQ 0 ≅ T$ 3 L 12 1 %ω /3 VLQK ω / 3
© A. Calomarde, Edicions Virtuals
Transparencia 3-14
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
ICP
IE
IC
I EP-ICP IEN
ICN
IBB
IB
w IC
• 'RQGH
(
9 (%
, & = , &3 + , &1 = D21 H
97
)
− 1 + D22
'3 QL2 1 D11 = T$ '3 SQ 0 ≅ T$ 1 %ω /3 VLQK ω /3 '3 SQ 0 ω ' Q ' Q2 ' Q coth + 1& & 0 ≅ T$ 3 L + 1& & 0 D12 = T$ /1& /1& /3 1 %ω /3
© A. Calomarde, Edicions Virtuals
Transparencia 3-15
(OHFWUyQLFD
([SUHVLRQHVGHODVFRUULHQWHVHQHO%-7 Emisor
Base
Colector
IEP
ICP
IE
IC IEP-ICP IEN
ICN
IBB
IB w IB
(
9 (%
, % ≡ , ( − , & = D11 H
(
= (D11 − D21 ) H
9(%
97
97
)
(
− 1 + D12 − D21 H
)
9(%
97
)
− 1 − D22 =
− 1 + (D12 − D22 )
© A. Calomarde, Edicions Virtuals
Transparencia 3-16
(OHFWUyQLFD
(ILFLHQFLDGHLQ\HFFLyQ • &RUUHVSRQGHDODUHODFLyQHQWUHFRUULHQWHGH HPLVRU\SRUWDGRUHVLQ\HFWDGRVHQODEDVH γ=
γ=
, (3 , (3 + , (1
, (3 , (3 + , (1
T$'3 QL2 9(% 97 T$'3 QL2 − 1 + H 1%Z 1 %ω ≅ 2 9 (% T$'3 QL2 9(% 97 T$' Q T$' 3 L + 1( Q(2 H 97 − 1 − 1 + H 1 %ω 1 %ω /1(
T$'3 QL2 '3 QL2 1 1 %ω ≅ = = 2 T$'3 QL T$'1( Q(2 1 ω' Q 1 ω' Q '3 QL2 + % 1( (2 1 + % 21( (2 + 1 %ω /1( /1( '3 QL /1(
γ≅
© A. Calomarde, Edicions Virtuals
1 1 % ω '1( 1+ 1 ( /1( '3 Transparencia 3-17
(OHFWUyQLFD
• 9HPRVTXHSDUDREWHQHUXQDHILFLHQFLDGH LQ\HFFLyQDOWDHVQHFHVDULR – ωEDMDDQFKRGHODEDVH r NE >> NB » 9DORUHVWtSLFRVVRQ { NE≅FP { NB≅FP { NC≅FP – (VWDVGRVFRQGLFLRQHVVHHQXPHUDURQDOSULQFLSLR\VHKDQ HVFRJLGRFRPRSDUiPHWURVSDUDODVLPSOLILFDFLyQGHDOJXQDV H[SUHVLRQHV
© A. Calomarde, Edicions Virtuals
Transparencia 3-18
(OHFWUyQLFD
)DFWRUGHWUDQVSRUWH • 5HODFLyQHQWUHODFRUULHQWHTXHOOHJDDOFROHFWRU\ ODTXHVDOHGHOHPLVRU α7 =
ω , &3 ω2 sec K ≅ 1 − 2 , (3 /3 /3
– 3DUDREWHQHUXQIDFWRUGHWUDQVSRUWHDOWRHOWUDQVLVWRUGHEHUi WHQHUXQDωSHTXHxD
© A. Calomarde, Edicions Virtuals
Transparencia 3-19
(OHFWUyQLFD
*DQDQFLDGHO%-7 • /DJDQDQFLDGHO%-7YHQGUiGDGDSRUODUHODFLyQ GHODFRUULHQWHWRWDOGHOHPLVRUTXHOOHJDDO FROHFWRU α=
, &3 , (3 , &3 = ,( , ( , (3
ω2 1 − 2 / 3 = γα 7 ≅ 1 % ω '1( 1+ 1 ( /1( '3
– 9DORUTXHVXHOHVHUPX\SUy[LPRDSHURPHQRUTXH%DMR HVWDVFRQGLFLRQHVVHGHILQHHOSDUiPHWURβFRPRODJDQDQFLD GHOWUDQVLVWRUHQWUHODEDVH\HOFROHFWRU ,& ,(
= α 2 + , &%2 α2 ,& = = ,& + , % 1 − α2
© A. Calomarde, Edicions Virtuals
,%
+
, &%2
1 − α2
Transparencia 3-20
(OHFWUyQLFD
– 6LGHILQLPRV
β=
α0 1 − α0
, &(2 =
, &%2 α0
– 7HQGUHPRVODVVLJXLHQWHVUHODFLRQHVEiVLFDVHQWUHFRUULHQWHV HQHOWUDQVLVWRUHQSRODUL]DFLyQDFWLYD ,& ,( ,&
= α 0 + , &%2 = ,& + , %
= β, % + , &(2
– /DVFXDOHVQRVLQGLFDQTXHHO%-7HVXQGLVSRVLWLYR FRQWURODGRSRUFRUULHQWH
© A. Calomarde, Edicions Virtuals
Transparencia 3-21
(OHFWUyQLFD
'LIHUHQWHVPRGRVGHRSHUDFLyQ npe
Directa
VBE pn npc
pn npe
npc
ACTIVA
SATURACIÓN
Inversa
Directa
npe
pn
npe Inversa
npc
pn CORTE
npc
ACTIVA INVERSA
© A. Calomarde, Edicions Virtuals
Transparencia 3-22
(OHFWUyQLFD
0RGHORGH(EHUV0ROO • 8QDIRUPDJHQpULFDGHREWHQHUHOIXQFLRQDPLHQWR HQORVFXDWURPRGRVGHIXQFLRQDPLHQWRHV LQWHQWDUHVFULELUXQDH[SUHVLyQJHQHUDOGHOWLSR 9
9
&% (% , ( = , )2 H 97 − 1 − α 5 , 52 H 97 − 1 9
9
&% (% , & = α ) , )2 H 97 − 1 − , 52 H 97 − 1
– 4XHSRUVLPLOLWXGFRQORVUHVXOWDGRVREWHQLGRVSDUDODV FRUULHQWHVGHOWUDQVLVWRUSXHGHQGHGXFLUVHORVSDUiPHWURVGH ODVHFXDFLRQHVGH(EHUV0ROO
© A. Calomarde, Edicions Virtuals
Transparencia 3-23
VBC
(OHFWUyQLFD
&DUDFWHUtVWLFD,9 – 6LUHSUHVHQWDPRVODVHFXDFLRQHVDQWHULRUHVSDUDXQWUDQVLVWRU131REWHQHPRV
IB
IC
RUPTURA
SATURACIÓN IB2 IB1 IB0
βIB2 βIB1 βIB0
IB2>IB1>IB0
ACTIVA
VBE
ACTIVA INVERSA
CORTE
VCE
££6LPLODUDXQD XQLyQ31HQGLUHFWD
© A. Calomarde, Edicions Virtuals
Transparencia 3-24
(OHFWUyQLFD
&RQFOXVLRQHV • WLSRVGHWUDQVLVWRUELSRODU
NPN
PNP
Colector
Colector Base
Base
Emisor
Emisor
– &XDWURWLSRVGHIXQFLRQDPLHQWR » $FWLYD » &RUWH » 6DWXUDFLyQ » $FWLYDLQYHUVD – (QDFWLYD ,& ,(
= α 0 + , &%2 = ,& + , %
= β, % © A. Calomarde, Edicions Virtuals ,&
+ , &(2 Transparencia 3-25
© A. Calomarde, Edicions Virtuals
Transparencia 4-1
$&DORPDUGH 'HSDUWDPHQWG¶(QJLQ\HULD(OHFWUzQLFD 8QLYHUVLWDW3ROLWqFQLFDGH&DWDOXQ\D
7UDQVLVWRU026
(OHFWUyQLFD
(OHFWUyQLFD
,QWURGXFFLyQ • (VWiIRUPDGRSRUXQDHVWUXFWXUDGH0HWDOÏ[LGR 6HPLFRQGXFWRU026 • 6LQGXGDDOJXQDHVHOGLVSRVLWLYRPiVXWLOL]DGRHQ HOHFWUyQLFDDFWXDOPHQWH • /DJUDQYHQWDMDTXHSUHVHQWDUHVSHFWRDO%-7HV VXJUDQFDSDFLGDGGHLQWHJUDFLyQ • 3DUDVXHVWXGLRHOXGLUHPRVODWHRUtDGHEDQGDV\ XVDUHPRVHOSRWHQFLDOGHFRQWDFWR\HOSULPHU SDVRVHUiFRQRFHUODHVWUXFWXUD026SDUD GHVSXpVHVWXGLDUHOWUDQVLVWRU026
© A. Calomarde, Edicions Virtuals
Transparencia 4-2
(OHFWUyQLFD
3RWHQFLDOGHFRQWDFWR • 'RVPDWHULDOHVGHGLVWLQWDFRQFHQWUDFLyQGH SRUWDGRUHVDOSRQHUORVHQFRQWDFWRJHQHUDQHO OODPDGRSRWHQFLDOGHFRQWDFWR Fe Cu – (OHJLPRVXQPDWHULDOGHUHIHUHQFLDHO YDFtR\SRGUHPRVGHILQLUHOSRWHQFLDOGH FRQWDFWRGHOPDWHULDOUHVSHFWRGHOYDFtR Φ 0 1,9$&,2 = Φ 0 1 − Φ9$&,2 = Φ 0 1
Vo
– 6LFRQHFWiUDPRVHQVHULHYDULRVPDWHULDOHVWHQGUtDPRV
M1
M2
M3
M4
ΦM1,M2 ΦM2,M3 ΦM3,M4 Φ 0 1, 0Q = Φ 0 1, 0 2 + Φ 0 2, 0 3 +
MN- 1 MN
K
ΦMn-1,Mn
Φ 0Q −1, 0Q = = (Φ 0 1 − Φ 0 2 ) + (Φ 0 2 − Φ 0 3 ) + + (Φ 0Q −1 − Φ 0Q ) = = Φ 0 1 − Φ 0Q
© A. Calomarde, Edicions Virtuals
K
Transparencia 4-3
(OHFWUyQLFD
7HQVLyQGHEDQGDSODQD Estructura M.O.S.
– $SDUHFHUiXQSRWHQFLDOHQWUH ODSXHUWD\HOVXEVWUDWRTXHVHUi
Metal Óxido (SiO2)
Puerta
EXON
SRWHQFLDO = Φ *$7( −Φ %8/. ≡ Φ 06 ∑ JDWH GHFRQWDFWR
Si (P ó N) Sustrato
– 6LΦMS≠ DSDUHFHUiQFDUJDV DDPERVODGRVGHOy[LGRVLPLODUDODFDSDFLWDQFLDCV = Q – (VWDVFDUJDVGHVDSDUHFHUiQVLDSOLFDPRVXQDWHQVLyQH[WHUQDVGB TXHVHD H[DFWDPHQWHLJXDODΦMSSHURGHVLJQRFRQWUDULR
9*% = Φ 06 – (VWRQRHVWRWDOPHQWHFLHUWRGHELGRDTXHH[LVWHQFDUJDVSURYHQLHQWHVGH – LPSXUH]DVHQODLQWHUIDFHy[LGR60&\HQHOy[LGR
© A. Calomarde, Edicions Virtuals
Transparencia 4-4
(OHFWUyQLFD – (VWDVFDUJDV4 SURYRFDUiQTXHODWHQVLyQSDUDKDFHU GHVDSDUHFHUWRGDVODVFDUJDVVHDDKRUD 4 9*% = Φ 06 + Φ 2; = Φ 06 − 0 &0
4XHSRUGHILQLFLyQHVOD7(16,Ï1'(%$1'$3/$1$ 9)% = Φ 06 −
40 &0
9DORUHVWtSLFRV Q0/C0 = - 0.45v
ΦMS
ΦM(Al) = 4.1 v ΦM(Poli N++) = 4.15 v; ΦM(Poli P++) = 5.25 v ΦS= 4.71 VT ln N/ni ≅0.29 v VFB SMC P(NA=1015) SMC N(ND=1015)
© A. Calomarde, Edicions Virtuals
Al -1.35 -0.77
Poli N++ -1.3 -0.72
-Q0/C0
Poli P++ -0.2 +0.38
Transparencia 4-5
(OHFWUyQLFD
%DODQFHGHSRWHQFLDO\FDUJDSDUD XQDWHQVLyQH[WHUQD V GB
w VGB =ΦMS +ΦOX +ΦS – &XDQGRKD\DXQDYDULDFLyQGH9
HVWDVHUi
*%
DEVRUELGDSRUΦOX \RΦS SRU\DTXHΦMS HVFRQVWDQWH
QG Q0 z.c.e.
» ∆VGB =∆ΦOX +∆ΦS
ΦOX ΦS
QSC
w Q’G + Q’0 + Q’SC = 03DUDQHXWUDOLGDG – 6LKD\XQLQFUHPHQWRGHFDUJDHQHO³JDWH´VHUi – DEVRUELGRSRUQSC\DTXHQ0HVFRQVWDQWH » ∆Q’G +∆Q’SC =
© A. Calomarde, Edicions Virtuals
Transparencia 4-6
(OHFWUyQLFD
(IHFWRGHVGB\VFBHQODVXSHUILFLH GHOVHPLFRQGXFWRU
• &RQVLGHUDUHPRVVXEVWUDWRWLSRP\JDWHGHAl (VFB =v) w VGB < VFB ⇒$&808/$&,Ï1 – /DFDUJDDGLFLRQDOHQ³JDWH´HVQHJDWLYDSRUORTXHDWUDHDODVXSHUILFLHGHO 60&FDUJDSRVLWLYDGHO6L\H[LVWHXQD³DFXPXODFLyQ´GHKXHFRV
− ΦS < 0 r Q’SC > 0
w VGB = - v = VFB⇒&RQGLFLyQGH%$1'$3/$1$ − ΦS = 0 r Q’G = - Q’0⇒Q’SC = 0
w VGB > VFB = -⇒'(3/(;,Ï1 – /DFDUJDHQ³JDWH´HVSRVLWLYDSRUORTXHDWUDHDODVXSHUILFLHGHO60&FDUJD QHJDWLYDGHO6L\H[LVWHXQD³GHSOH[LyQ´R]FHHQODVXSHUILFLHGHO60&
− ΦS > 0 , Q’SC < 0 © A. Calomarde, Edicions Virtuals
Transparencia 4-7
(OHFWUyQLFD
w VGB >> VFB⇒,19(56,Ï1 – /DFDUJDHQ³JDWH´HVSRVLWLYD\HOHYDGDSRUORTXHDWUDHDOD VXSHUILFLHGHO60&XQDHOHYDGDFDUJDQHJDWLYDHQODVXSHUILFLH GHWDOPDQHUDTXHqNAHVLQVXILFLHQWHSDUDFRPSHQVDUODFDUJD HQHOJDWH\DSDUHFHXQDEDQGDGHHHQODVXSHUILFLHGHO60& TXHDODXPHQWDUVGBKDUiTXHSUHGRPLQHQORVe-VREUHORVh+
− ΦS > 0 , Q’SC < 0
Balance de cargas para diferentes tensiones de V GB y SMC tipo P O
M
S
M
O
S
O
M
S
QG
h+
O
M
S
QG
QG
qNa
Acumulación QG < 0
Banda Plana VGB = VFB
Deplexión VGB > VFB
Inversión VGB >> VFB
VG B © A. Calomarde, Edicions Virtuals
Transparencia 4-8
(OHFWUyQLFD
&DUJDOLEUHLQYHUWLGD – /DFDUJDOLEUHLQYHUWLGDFRUUHVSRQGHDODFDUJDHQODVXSHUILFLH GHOVHPLFRQGXFWRUFXDQGRHO026HVWiHQLQYHUVLyQ – 6HJ~QODUHODFLyQGH%ROW]PDQ
Qsup = QEXON H
Φ6
97
– &RPR
S% Q% = QL2 \ S% ≅ 1 $ ⇒Q% ≅
QL2 1$
– 7HQHPRVTXH
Qsup =
QL2 Φ 6 97 H 1$
© A. Calomarde, Edicions Virtuals
Transparencia 4-9
(OHFWUyQLFD – /DH[SUHVLyQGHOSRWHQFLDOGHFRQWDFWRGHO60&3HV Φ3 1$ 1 Φ ⇒ $ = H 97 3 = 97 ln QL QL
– 6XVWLWX\HQGR HQ REWHQHPRV Qsup = QL H
(Φ 6 − Φ 3 ) 9
ns(log)
7
– <YROYLHQGRDVXVWLWXLUni
Qsup = 1 $H
(Φ 6 − 2Φ 3 ) 9
7
– 'HELGRDTXHSHTXHxDVYDULDFLRQHV GHΦ6SURYRFDQJUDQGHVDXPHQWRV GHnsHQIXHUWHLQYHUVLyQ FRQVLGHUDUHPRVΦS= cte = 2ΦP
ΦP
ΦS
2ΦP
n=p=ni Acumulación Débil Fuerte Inversión Deplexión
© A. Calomarde, Edicions Virtuals
Transparencia 4-10
(OHFWUyQLFD
7UDQVLVWRU026 – (O WUDQVLVWRU 026 VH REWLHQH DxDGLHQGR HQ ORV H[WUHPRV GH OD FDSD GH LQYHUVLyQ GRV FRQWDFWRV TXH IRUPDQ HO VXUWLGRU \ GUHQDGRU – $SOLFDQGR XQD WHQVLyQ HQWUH HVWRV GRV FRQWDFWRV FLUFXODUi FRUULHQWH D WUDYpV GH OD FDSDGHLQYHUVLyQ – &RPRHOQ~PHURGHSRUWDGRUHVGLVSRQLEOHV SDUDODFRQGXFFLyQHQODFDSDGHLQYHUVLyQ GHSHQGH GHO SRWHQFLDO GH SXHUWD pVWD SXHGH VHU XWLOL]DGD SDUD PRGXODU XQD WHQVLyQ – 3DUDXQIXQFLRQDPLHQWRQRUPDOODVXQLRQHV SQ IRUPDGDV SRU IXHQWHVXEVWUDWR \ GUHQDGRUVXEVWUDWRGHEHQHVWDUHQ LQYHUVD SRUORTXHSDUDXQ026GHFDQDO11026 { VSB > 0 { VDB > 0 © A. Calomarde, Edicions Virtuals
Puerta
Fuente n+
Drenador n+
canal N
p
Substrato
3026
*
' %
1026 *
6
' % 6
Transparencia 4-11
(OHFWUyQLFD
&DUDFWHUtVWLFD,9 – 6XSRQGUHPRV6XUWLGRUFRPRUHIHUHQFLD w w w
VB = VBS VG = VGS VD = VDS VG x
n+ y
QN (canal)
VD n+
y
QB (z.c.e.)
p VB
– ([LVWHQWUHVWLSRVGHFDUJD { QN&DUJDHQHOFDQDOIRUPDGDSRUHOHFWURQHV { QB&DUJDHQOD]RQDGHFDUJDHVSDFLDO { QP&DUJDHQHOVXEVWUDWRQHXWUD © A. Calomarde, Edicions Virtuals
Transparencia 4-12
(OHFWUyQLFD
&DUDFWHUtVWLFDI-V – (QODGLUHFFLyQ\KDEUiXQDYDULDFLyQGHSRWHQFLDOHVHQWUH\ 9' { y = 0 V(0) = 0 + VB ω { y = L V(L) = VD + VB – 2EWHQGUHPRVODUHVLVWHQFLDHQXQ x0 dyGHOFDQDO
, ' ≡ , '6 =
G9 G9 G\ = G5 G\ G5
– &RPR G5 =
ρ ( [)G\ ω[0
– 7HQHPRV G5 = © A. Calomarde, Edicions Virtuals
dy
1 G\ TQ( [) µ 1 ( [ ) ω[0 Transparencia 4-13
(OHFWUyQLFD – 3RUORWDQWR
G\ = TQ( [) µ ( [)ω[ 1 0 G5 – 6LFRQVLGHUDPRVXQYDORUPHGLRSDUDODPRYLOLGDG\TXHODFDUJD WRWDOVHUiQP = q p(x) x0
G\ = µ ω4 ( \ ) G5 1 1 – 3RUORTXH
, ' = µ 1ω41 ( \ )
G9 G\
– <ODFRUULHQWHWRWDO /
9 % +9 '
0
9%
∫ , ' G\ =
∫ µ 1ω41 ( \ )G9
,' = µ1
9 +9
ω % ' 41 ( \ )G9 / 9∫%
© A. Calomarde, Edicions Virtuals
Transparencia 4-14
(OHFWUyQLFD – (O YDORU GH QN(y) HQ UHDOLGDG HV QN[V(y)] VH SXHGH REWHQHU SODQWHDQGR ODV HFXDFLRQHV GH 0D[ZHOO FRQVLGHUDQGR HO YHFWRU GHVSOD]DPLHQWRFRQVWDQWHDOFDPELDUGHPHGLRHQHOLQWHUIDFH r
r
'1 = '2 r r (1ε = (2ε 2;
6,
– <ORVYDORUHVGHOFDPSRHOpFWULFRVRQ
r 9 + 9% − (Φ 6 + Φ 06 ) (1 = * W2; r 42; + 4Q + 4E (2 = − ε 6, – 6XVWLWX\HQGR 9* + 9% − (Φ 6 + Φ 06 )
© A. Calomarde, Edicions Virtuals
ε 2; 4 + 4Q + 4E ε 6, = − 2; ε 6, W2;
Transparencia 4-15
(OHFWUyQLFD – <WHQLHQGRHQFXHQWDTXHεox/toxHVCoxFDSDFLGDGSRUXQLGDGGH VXSHUILFLH 9* + 9% − (Φ 6 + Φ 06 ) = −
42; + 4Q + 4E &2;
(QHOVXUWLGRU\ = ⇒ Φ 6 = 2Φ ) + 9% – (OYDORUGHΦSHQIXHUWHLQYHUVLyQHV (QHOGUHQDGRU\ = / ⇒ Φ 6 = 2Φ ) + 9 ( \ )
– <HOYDORUGH4%DOLJXDOTXHHQODXQLyQ31
4% =
2Tε 0ε 6, 1 ' (2Φ ) + 9 ( \ ) )
– 6XVWLWX\HQGR
9* − Φ 06 + 9% = −
2Tε 0ε 6, 1 ' 42; 41 − + &2; &2; &2;
(2Φ ) + 9 ( \ ) )
– 6LWHQHPRVHQFXHQWDTXHVFB =ΦMS - QOX/COX\TXHDOFRFLHQWH
γ=
2Tε 0ε 6, 1 ' &2;
© A. Calomarde, Edicions Virtuals
Transparencia 4-16
(OHFWUyQLFD –
, ' = µ&2; ω [9* − 9)% − 2Φ ) ]9' − 9' − 2 γ [(9% + 9' + 2Φ ) )3 2 − (9% − 2Φ ) )3 2 ] / 2 3 2
– 2WDPELpQ ,'
2 2 9 = β [9* − 9)% − 2Φ ) ]9' − ' − γ 2 3
[( % + 9
9'
+ 2Φ ) )
32
− (9% − 2Φ ) )
32
]
6LHQGR
β = µ&2;
© A. Calomarde, Edicions Virtuals
ω
/
Transparencia 4-17
(OHFWUyQLFD
7HQVLyQ8PEUDO
– /DWHQVLyQXPEUDOHVODWHQVLyQGHSXHUWD VGTXHKDFHTXHODFRUULHQWHID VHDFHUR – 'H OD H[SUHVLyQ DQWHULRU VH UHDOL]D XQ GHVDUUROOR HQ VHULHV GH 7D\ORU SDUD VD⇒SDUDHOWpUPLQR(VB + 2ΦF+VD)3/2REWHQLpQGRVH ,'
≅ β {[9* − 9)% − 2Φ ) ]9' − γ (
9%
− 2Φ ) )9' }
3RUORWDQWR
97 = 9)% + 2Φ ) + γ 9% + 2Φ ) – <VLVB = 0
97 0 = 9)% + 2Φ ) + γ 2Φ ) – <
9 = 90 + { 7
7
6LHPSUH
<0
γ [ 9 + 2Φ − 2Φ ] 1444 424444 3 %
> 0 WLHQHPLVPRVLJQR < 0
)
)
SDUDFDQDO 1VXEVWUDWR 3 SDUDFDQDO 3VXEVWUDW R 1
© A. Calomarde, Edicions Virtuals
Transparencia 4-18
(OHFWUyQLFD
&DUDFWHUtVWLFDV\PRGHORGHO026 Características MOS canal N IDS
IDS
V DS(sat ) =VGS- VT
saturación
VD S c te
zona lineal
V’’GS >VGS V’GS >VGS VGS >VT >0
VT0
V’T
© A. Calomarde, Edicions Virtuals
VGS
VDS
Transparencia 4-19
(OHFWUyQLFD
([SUHVLRQHVI-VVLPSOLILFDGDV – 3XHGHQ REWHQHUVH H[SUHVLRQHV PiV VHQFLOODV SDUD HO FiOFXOR µD PDQR¶ GH ODV H[SUHVLRQHVI-VWHQLHQGRHQFXHQWDODWHQVLyQVTO\REWHQLHQGRXQDUHODFLRQI-V SDUDFDGDXQDGHODV]RQDVGHIXQFLRQDPLHQWR IDS – 3DUDOD]RQDOLQHDO β VGS3 >V GS2 2 ,' = 2(9*6 − 97 0 )9'6 − 9'6 2
[
]
– 4XHHVYiOLGDSDUDWHQVLRQHV VDS < VGS - VT0 – 9DORUTXHFRUUHVSRQGHDODWHQVLyQ GUHQDGRUVXUWLGRUSDUDODFXDOHO WUDQVLVWRUHVWiHQVDWXUDFLyQ – $VtSDUDHOUpJLPHQGHVDWXUDFLyQ , ' , VDW
= , ' (9'6 = 9'6 , VDW ) =
VGS2 >VGS 1
VGS1 VDS =V GS-VTO
β (9*6 − 97 0 )2 2
VDS
.1 = β
– (QDOJXQRVOLEURVVHXWLOL]DKnR(Kp)HQOXJDUGHβ
2
© A. Calomarde, Edicions Virtuals
=
µ&2; ω 2/
Transparencia 4-20
(OHFWUyQLFD
2WURVWLSRVGH026 NMOS de acumulación(enrequecimiento) NMOS de deplexión(empobrecimiento). Puerta
Fuente
Drenador
n+
Puerta
Fuente
n+
n+
p
Drenador n+
Canal N
p
Substrato
PMOS
NMOS D
L'
B Y+ '6
G
+
-
Y6* +
S
D
+
B
G
-
S
D
D
L'
+
Y' 6
G
+
Y*6 -
© A. Calomarde, Edicions Virtuals
G
-
D
L'
Y 6* +
S
+
B
G
Y6'
D
D
Y6'
G
-
Y* 6 - S
+
-
PMOS
-
+
S
Y6* +
S
L'
L'
B Y+ '6
Y6'
Y *6 -
VGS =0
Substrato NMOS
L'
+
Y'6
G
+
Y *6 -
S
Y 6* +
+
-
Y6'
G
-
S
L'
D
L'
Transparencia 4-21