Non-Conventional Energy Resources
G.S. SAWHNEY Professor and Head Department of Mechanical Engineering Accurate Institute of Management and Technology Greater Noida Formerly Professor and Head Department of Mechanical Engineering GNIT, Greater Noida and LKIE, Ghaziabad
New Delhi-110001 2012
NON-CONVENTIONAL NON-CONVENTION AL ENERGY RESOURCES
G.S. Sawhney
© 2012 by PHI Learning Private Limited, New Delhi. All rights reserved. No part of this book may be reproduced in any form, by mimeograph or any other means, without permission in writing from the publisher. ISBN-978-81-203-4609-3
The export rights of this book are vested solely with the publisher.
Published by Asoke K. Ghosh, PHI Learning Private Limited, M-97, Connaught Circus, New Delhi-110001 and Printed by Baba Barkha Nath Printers, Bahadurgarh, Haryana-124507.
C ONTENTS
Preface
xi
1. ENERGY RESOURCES AND THEIR UTILISATION
1.1 1.2 1. 2
Introductio Int ion n 1 Ener En ergy gy Res eso our urcces 1.2.1 1.2 .1
1.3 1. 3
1.4 1. 4
1.7
3
11
Energy Ener gy In Inte tens nsit ity y Ener En ergy gy El Elas asti tici city ty
11 12
12
Significa Signi ficance nce of NonNon-Con Convent ventiona ionall Energy Energy Reso Resource urcess Energy Ener gy Po Poli licy cy in In Indi diaa 13 Worl Wo rld d Ene Energ rgy y Sta Statu tuss 14 Indi In dian an En Ener ergy gy Sc Scen enar ario io 15
Enviro Env ironm nmen entt Aspe Aspect ctss of Ene Energ rgy y 1.6.1 1.6. 1. 6.2 2
2
Therm Ther mal En Eneerg rgy y 3 Hyd Hy del Ener erg gy 4 Nuccle Nu leaar En Ener ergy gy 5 Solar En Energy 5 Wind Energy 6 Tidal En Energy 8 Geot Ge othe herm rmal al En Ener ergy gy 9 Ocea Oc ean n En Eneerg rgy y 10
India Ind ian n and and Glob Global al Ene Energ rgy y Resou Resourc rces es 1.5.1 1.5. 1. 5.2 2 1.5. 1. 5.3 3 1.5. 1. 5.4 4
1.6 1. 6
Classi Cla ssific ficati ation on of Ener Energy gy Res Resou ource rcess
Eneerg En rgy y Pa Para rame mete ters rs 1.4.1 1.4. 1 1.4. 1. 4.2 2
1.5 1. 5
1
Type Ty pess of Ene Energ rgy y Reso Resour urce cess 1.3.1 1.3. 1 1.3. 1. 3.2 2 1.3. 1. 3.3 3 1.3 .3..4 1.3 .3..5 1.3 .3..6 1.3. 1. 3.7 7 1.3 .3.8 .8
Pollution 25 Gree Gr eenh nhou ouse se Eff Effec ects ts
Energy Ch Chain
12
25
25
26
2. SOLAR RADIATION
2.1 2.2 2. 2
1–26
27–54
Introductio Int ion n 27 Radi Ra diat atio ion n Spect Spectru rum m from from Sun and and Earth Earth iii
27
iv CONTENTS
2.3 2.4 2. 4 2.5 2. 5 2.6 2.7 2. 7 2.8 2. 8 2.9 2. 9 2.10
Extraterres Extrate rrestria triall Radia Radiatio tion n and and Solar Solar Con Consta stant nt 29 Lati La titu tude de an and d Lon Longi gitu tude de 33 Basi Ba sicc Sun Sun–E –Ear arth th An Angl gles es 34 Angle Ang le betwee between n Inciden Incidentt Beam Beam and Norma Normall to Incline Inclined d Surface Surface ( q ) Loccal Ap Lo Appa pare rent nt Tim Timee 38 Sunri Su nrise se,, Sunse Sunsett and and Sola Solarr Day Day Leng Length th 39 Inten Int ensi sity ty of of Terre Terrestr stria iall Radi Radiat atio ion n 42 Solarr Radi Sola Radiati ation on Dat Dataa 43
37
2.10.1 Mon Monthly thly Averag Averagee Daily Globa Globall Radiation Radiation ( H g ) on Horizontal Surface 2.10.2 Monthly Average Daily Diffuse Diffuse Radiation on Horizontal Horizontal Surface 45 2.10.3 Monthly Average Daily Global Global Radiation on Tilted Tilted Surface Surface ( H T )
2.11 Measure Measurements ments of Solar Solar Radia Radiation tion Data
3.3 3. 3
Classific Classi ficati ation on of Sol Solar ar Co Colle llecto ctors rs 56 Flat Fl at Pla Plate te Col Colle lect ctor or 59 Modi Mo difi fied ed Fla Flatt Plate Plate Coll Collec ecto tor r 60 Compou Com pound nd Par Parabo abolic lic Co Conce ncentr ntrato atorr 61 Cylind Cyl indric rical al Par Parabo abolic lic Con Concen centra trator tor 61 Linea Lin earr Fresn Fresnel el Len Lenss Coll Collec ecto tor r 62 Fixed Fix ed Mir Mirror ror Sol Solar ar Con Concen centra trator tor 63 Para Pa rabo bolo loid idal al Dish Dish Col Colle lect ctor or 64 Hemisp Hem isphe heric rical al Bowl Bowl Mirr Mirror or Conc Concent entrat rator or 64 Circular Circu lar Fresne Fresnell Lens Lens Concent Concentrato rator r 65 Central Cent ral Tower Tower Rece Receiver iver Colle Collector ctor 66 Compariso Comp arison n between between Flat and Focussi Focussing ng Collector Collectorss Orientatio Orien tation n of Flat Plate Coll Collecto ector r 67 Collector Colle ctor Perfo Performan rmance ce Testi Testing ng 67
Sola So larr Ene Energ rgy y Stor Storag agee 3.3.1 3.3.1 3.3. 3. 3.2 2 3.3. 3. 3.3 3
3.4 3.5 3. 5 3.6 3. 6 3.7 3.8 3. 8 3.9 3. 9 3.10 3.11 3.12 3.1 2 3.13 3.1 3 3.14 3.15 3.1 5
55–86
Introductio Int ion n 55 Sola So larr Co Coll llec ecto tors rs 55 3.2.1 3.2.1 3.2. 3. 2.2 2 3.2. 3. 2.3 3 3.2.4 3.2 .4 3.2.5 3.2 .5 3.2. 3. 2.6 6 3.2.7 3.2 .7 3.2. 3. 2.8 8 3.2.9 3.2 .9 3.2.10 3.2.11 3.2.12 3.2.13 3.2.1 3 3.2.14
45
50
3. SOLAR ENERGY
3.1 3.2 3. 2
44
66
69
Classific Classi ficati ation on of Solar Solar Energ Energy y Storag Storagee System System Sens Se nsib ible le He Heat at St Stor orag agee 70 Late La tent nt He Heat at St Stor orag agee 72
69
Solar Pond 74 Sola So larr Wat Wateer Hea Heate ter r 75 Sola So larr The Therm rmal al Pu Pump mp 76 Solar Furnace 77 Sola So larr Pas Passi sive ve He Heat atin ing g 78 Sola So larr Pas Passiv sivee Spa Space ce Co Cool olin ing g 79 Solar Refrig Refrigeratio eration n and and Cooling Cooling System 80 Solar Vapour Vapour Compress Compression ion Refrigera Refrigeration tion aand nd Cooling Cooling Sola So larr Co Cook oker erss 83 Solar Sol ar Distil Distilla lati tion on 84 Solarr Therma Sola Thermall Power Power Plant Plantss 84 Solar Sol ar Gree Greenh nhou ouse se 85
82
CONTENTS
4. SO SOLAR PHOTOVOLTAIC SYSTEM
4.1 4.2 4. 2
Introductio Int ion n 87 Sola So larr Cell Cell Fun Funda dame ment ntal alss 4.2.1 4.2. 1 4.2. 4. 2.2 2
4.3 4. 3
4.4 4. 4
4.5 4.5 4.6 4. 6
Semic Sem ico ond ndu ucto tors rs 88 Phot Ph otov ovol olta taic ic Eff Effec ectt 90 Solar Ce Cell 91 Sola So larr PV PV Mo Modul ulee Sola So larr PV Pan aneel Sola So larr PV Arr rraay
94
Voltage–C Voltag e–Curr urren entt Chara Characte cteris ristic tic of of p-n p-n Junction Junction (Solar Cell) Ener En ergy gy Lo Loss sses es of So Sola larr Cell Cell 97 Maxi Ma ximi misi sing ng the the Per Perfo form rman ance ce 99
Materi Mate rial alss for for Sola Solarr Cel Cells ls Sola So larr PV Sy Syst steems 102 4.6.1 4.6. 1 4.6. 4. 6.2 2 4.6.3 4.6 .3 4.6. 4. 6.4 4 4.6. 4. 6.5 5 4.6.6 4.6 .6 4.6. 4. 6.7 7 4.6. 4. 6.8 8 4.6.9 4.6 .9
91
92 93 93
Solar Sol ar Ce Cell ll Ch Char arac acte teri risti stics cs 4.4.1 4.4.1 4.4. 4. 4.2 2 4.4. 4. 4.3 3
87–105
87
Sola So larr Cell Cell,, Modu Module le,, Pane Panell and and Arra Array y 4.3.1 4.3. 4. 3.2 2 4.3 4. 3.3 4.3. 4. 3.4 4
95
100
Centra Cent rall Powe Powerr Stat Statio ion n Syst System em 102 Stan St andd-Al Alon onee Syst System em 102 Grid Gri d Int Intera eracti ctive ve Sol Solar ar PV Sys System tem 103 Smal Sm alll Con Consu sume merr Sys Syste tems ms 103 Hybr Hy brid id Sol Solar ar PV PV Syst System em 104 Advan Adv antag tages es and and Disad Disadvan vantag tages es of PV PV System System Sola So larr PV PV Sys Syste tem m and and Co Cost st 104 Sola So larr PV PV Prog Progra ramm mmee in in Ind India ia 105 Energy Ene rgy Pay Payba back ck Per Period iod of a Solar Solar Cel Celll 105
104
5. BIOGAS
5.1 5.2 5.3
5.4
Biogas 5.4.1 5.4.1 5.4. 5. 4.2 2 5.4.3 5.4 .3 5.4.4 5.4 .4 5.4. 5. 4.5 5 5.4. 5. 4.6 6 5.4. 5. 4.7 7 5.4. 5. 4.8 8 5.4. 5. 4.9 9 5.4.10 5.4.11 5.4 .11
5.5 5. 5
106–127
Introductio Int ion n 106 Pho Ph otosynth theesi siss 106 Biomass 107 5.3.1 5.3. 5. 3.2 2 5.3.3
Biofuels 107 Biom Bi omas asss Res Resou ourc rces es 109 Advantag Adva ntages es and Disa Disadvan dvantage tagess of of Bioma Biomass ss Ener Energy gy
109
110 Aerobic Aerob ic an and d Anae Anaerob robic ic Pro Proce cesse ssess 110 Anae An aero robi bicc Diges Digesti tion on 110 Classi Cla ssific ficati ation on of Bio Bioga gass Pla Plants nts 114 Applic App licati ation on of Bio Bioga gass in IC Eng Engine ine 118 Mode Mo dels ls of Bi Biog ogas as Pl Plan ants ts 118 Biog Bi ogas as Pl Plan antt in in Hil Hilly ly Ar Area ea 118 By-P By -Pro rodu duct ct of Di Dige gest stio ion n 119 Loca Lo cati tion on of Bi Biog ogas as Pl Plan antt 120 Size Si ze of Bi Biog ogas asss Pla Plant nt 120 Problems Prob lems and and Constrai Constraints nts in the the Use of Bioga Biogass Commu Com munit nity y Biogas Biogas Plan Plants ts 122
Biom Bi omas asss Conv Conver ersio sion n Tech Techno nolo logi gies es 5.5.1 5.5. 1 5.5.2 5.5.3 5.5 .3 5.5.4 5.5.5 5.5 .5
v
121
122
Biom Bi omas asss Ga Gasi sifi fica cati tion on 124 Energy Recove Energy Recovery ry from from Urba Urban n Waste Waste by Land Landfill fill Reac Reactors tors Power Pow er Ge Gener nerati ation on fro from m Liqu Liquid id Was Waste te 125 Biomass Bioma ss Resou Resource rce Deve Developm lopment ent and Ener Energy gy Plant Plantatio ation n Bioma Bio mass ss Ene Energy rgy Pro Progra gramm mmee in in Ind India ia 127
124 126
vi CONTENTS
6. WIND ENERGY
6.1 6.2
Introduction 128 Origin of Winds 128 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6
6.3 6.4
134
Energy Available in Wind 134 Terms and Definitions of Fluid Mechanics 135 Principle of Power Generation 139 Axial Thrust on Turbine 143 Torque Generated by Wind Turbine 145 Tip Speed Ratio for Maximum Output 146 Aerodynamic Considerations 147
Types of Windmills 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7
6.6 6.7 6.8 6.9
Global Winds 129 Local Winds 129 Distribution of Wind Energy 129 Nature of Wind 130 Meterological Data about Wind Speed 130 Wind Speed Variations with Height 132
Wind Turbine Siting 134 Wind Turbine Aerodynamics 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7
6.5
128–160
150
Horizontal Axis Wind Turbine 150 Rotors of HAWT 152 Vertical Axis Wind Turbine 153 Rotor of VAWT 154 Comparison of HAWT and VAWT 155 Savonius Rotor 156 Darrieus Rotor 156
Wind Energy Storage 157 Environmental Impacts of Wind Turbines Recent Development 158 Wind Energy Programme in India 159
157
7. ELECTROCHEMICAL EFFECTS AND FUEL CELLS
7.1 7.2
Introduction 161 Fuel and Oxidant 161 7.2.1
7.3
161–178
Primary and Secondary Fuel Cells
Fuel Cell 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7 7.3.8 7.3.9 7.3.10 7.3.11 7.3.12
164
164
Principle of Fuel Cell 164 Efficiency of Fuel Cell 166 Types of Fuel Cells 169 Polymer Electrolyte Membrane Fuel Cell Alkaline Fuel Cell 173 Molten Carbonate Fuel Cell 174 Solid Oxide or Ceramics Fuel Cell 175 Regenerative Fuel Cell 176 Performance Limiting Factors of Fuel Cell Losses of a Fuel Cell 177 Advantages and Limitations of a Fuel Cell Application of a Fuel Cell 178
172
177 178
CONTENTS
8. HYDROGEN ENERGY
8.1 8.2 8.3 8.4
179–186
Introduction 179 Hydrogen as a Source of Renewable Energy Production of Hydrogen 180 Storage of Hydrogen 182 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7
179
Advances in Storage of Hydrogen 183 Hydrogen Powered Vehicles and Storage 184 Cost of Hydrogen Storage 184 Transportation or Delivery of Hydrogen 185 Hydrogen as Fuel and Safety Issues 185 Conversion of Hydrogen 186 Applications of Hydrogen 186
9. THERMOELECTRIC SYSTEMS FOR DIRECT ENERGY CONVERSION
9.1 9.2 9.3
Introduction 187 Important Physical Effects Thermoelectric Generator 9.3.1 9.3.2 9.3.3
9.4
9.5
10.
Materials for a Thermoelectric Generator 192 Characteristics of a Thermoelectric Generator 192 Applications of a Thermoelectric Generator 192
193
Principle of Operation of an MHD Generator 193 MHD Generator 195 Seeding of Carrier Gas in MHD Generator 196 Overall Power Cycle with MHD Converter 196 MHD Systems 197 Open Cycle Systems 197 Closed Cycle System 198 Materials for MHD Generators 200
Thermionic Power Conversion 9.5.1 9.5.2
200
Merits of Thermionic Converter 201 Applications of the Thermionic Converter
201
TIDAL POWER
203–211
10.1 Introduction 203 10.2 Origin of Tides 203 10.3 Tidal Energy 205 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5
187–202
187 190
Magnetohydrodynamic Power Conversion 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8
vii
Modes of Operation of Tidal Power Plant 207 Components of the Tidal Power Plant 207 Feasibility of the Tidal Power Plant 208 Merits of Tidal Energy 208 Limitations of Tidal Energy 208
10.4 Classification of Tidal Plant 10.4.1 Single Basin System 10.4.2 Double Basin System
209 209 210
10.5 Site Requirements 211 10.6 Tidal Power Development in India
211
viii CONTENTS
11. GEOTHERMAL ENERGY
212–222
11.1 Introduction 212 11.2 Resources of Geothermal Energy 11.3 Geothermal Power Plants 214
212
11.3.1 Hydrothermal Resources 214 11.3.2 Hot Dry Rock Resource 217 11.3.3 Comparison of Geothermal Power Plant with Convention Thermal Power Plant 218 11.3.4 Non-Electrical Applications of Geothermal Energy 218 11.3.5 Advantages and Disadvantages of Geothermal Energy 219 11.3.6 Materials for Geothermal Plant Equipment 219 11.3.7 Environmental Problems from Geothermal Energy 220 11.3.8 Criteria for Selection of Geothermal Site 220 11.3.9 Potential of Geothermal Energy in India 221 11.3.10 Exploration and Development of Geothermal Resources 221
12. WAVE ENERGY
223–230
12.1 Introduction 223 12.2 Wave Energy and Power 223 12.3 Wave Energy Devices 228 12.3.1 Advantages and Disadvantages of Wave Energy
230
13. OCEAN THERMAL ENERGY
13.1 13.2 13.3 13.4 13.5
231–235
Introduction 231 Working Principle of Ocean Thermal Energy Conversion Ocean Thermal Energy Conversion Systems 233 Status of OTEC Plants 234 Merits and Demerits of OTEC Plant 234
14. ENVIRONMENT AND KYOTO PROTOCOL
14.1 Introduction 236 14.2 Environmental Aspects 14.2.1 Greenhouse Effect 14.2.2 Global Warming
14.3 Kyoto Protocol
236–238
236 236 237
237
15. SMALL HYDRO RESOURCE
15.1 Introduction 239 15.2 Conversion of Hydropower
239–248
240
15.2.1 Turbines 241 15.2.2 Speed Control of Turbines 241 15.2.3 Suitability of Turbines 242
15.3 Small Hydropower Plants 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5
231
242
Demerits of Small Hydropower Sources 243 Merits of Small Hydropower Resources 243 Bulb Turbine 244 Components of a Small Hydropower Plant 244 Designing of a Micro Hydel Scheme 245
CONTENTS
15.4 Concept and Potential of Micro Hydel in India 246 15.5 Research and Development in India 246 15.6 Micro Hydropower for Socio-Economic Development
247
16. ENERGY MANAGEMENT
16.1 Introduction 249 16.2 Energy Economics 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.3.1 16.3.2 16.3.3 16.3.4 16.3.5
249–265
250
Definitions 250 Energy Commodities and Energy Resources 250 Energy Conversion Processes 251 Demand for Energy 251 Energy Demand Substitution 252 Energy Efficiency Standards to Optimise Consumer Choices
16.3 Energy Conservation
BIBLIOGRAPHY INDEX
252
253
Aspects of Energy Conservation Principles of Energy Conservation Energy Conservation Act 256 Cogeneration 257 Combined or Binary Cycle Plants
16.4 Energy Management and Audit 16.4.1 16.4.2 16.4.3 16.4.4 16.4.5 16.4.6 16.4.7 16.4.8
ix
253 254
258
260
Definition and Objectives of Energy Management Energy Audit and Need 261 Types of Energy Audit 262 Preliminary Audit 262 Detailed Energy Audit 262 Methodology for Detailed Audit 263 Energy Efficiency in Indian Industry 264 Status of Energy-Efficient Technologies in India
260
264
267 269–272
P REFACE
Fossil fuels are fast depleting, which has led to all-round global efforts to harness alternative energy resources. These resources are called non-conventional energy resources. Every country has plan to develop these resources commercially. There is a need to have more awareness about these resources and technologies to harness them and generate energy. Therefore, the subject matter has been included in the syllabi for engineering and science courses. The book is primarily intended to cover the syllabi prescribed by all major technical universities. Non-conventional energy resources is, therefore, an important subject which has been given rightful weightage in all branches of the undergraduate engineering curriculum. Based on my teaching experience, I have tried to explain the principles and concepts of renewable energy resources in simple and clear terms. The endeavour is to present the subject matter in the most comprehensive and usable form. The book presents an exhaustive coverage, definitions, formulae and examples which are well supported by plenty of diagrams and problems to make the undergoing principles more comprehensive. The book is precise and easy to understand. Effort has been made to present the concepts in question-answer format so that students assimilate the knowledge and have clear understanding of the subject matter. I wish to place on record my sincere thanks to my wife, Jasbeer Kaur, for her patience shown throughout the preparation of the book. I am also thankful to my children Jasdev, Tejmohan, Puja and Nandini for their encouragement to spend my spare time in writing work. I have also got the valuable assistance from my faculty members, specially Mr. Subham Sharma, for the early completion of the book. I would appreciate constructive suggestions and objective criticisms from students and teachers alike with a view to further enhancing the usefulness of the book. Readers may mail their suggestions at my email address. G.S. Sawhney
[email protected]
xi
1
CHAPTER
E NERGY RESOURCES
AND
T HEIR U TILISATION
•
•
Fossil fuels
Solid fuels
Liquid fuels Wood Coal Coke Charcoal
Diesel Petrol Kerosene
Gaseous fuels Coal gas LPG LNG Biogas
•
Head race Dam Reservoir Penstock
Turbine
Generator
Tail water
•
92
Kr 36
92
Kr 36
Slow neutron
236
U 92
Fast neutron and heat
r o t a l u d o M
Slow neutron
235
U 92
Fast neutrons and large heat
141
Ba 56 141
Ba 56
238
U
Neutrons absorbed
239
Pu
•
s a y r n S u
r t o c e l l c o r l a S o
Butane turbine
Butane boiler
Generator
Condenser Pump
Pump
Cold water
•
Tail guide vane Gearbox
Upper platform Rotor blade
Rotor
Generator
Guy wire Lower platform
Guy wire
Tower
Disc brake Generator (a)
(a)
(b)
(b)
(c)
•
Dam Low tide
Water flow
Tidal basin
Sea Turbine with generator (a) High tide Dam Water flow
Tidal basin
Sea Turbine with generator (b)
•
Steam
Generator
Turbine Refrigerant
Condenser or heat exchanger Water Water Hot water
Pump
From magma
To magma
•
Pump
r e t a w m r a W
n a e c o m o r f
Vapour of refrigerant
e c a f r u s
Turbine
Boiler
Condenser To ocean
Liquid of low BP refrigerant
Pump Pump To ocean Cold water from ocean depth
•
Energy consumption GDP
•
Growth in energy requirement GDP
Gas 21%
Nuclear 5% Coal 28%
Oil 38%
R e n e w 7 % a b l e
•
•
•
•
• • • • • • • • • •
Growing population
Regulatory framework
Agricultural production Technological advancement
Growth Drivers
Quality of life and purchasing Rapidly growing small and medium enterprises
Energy sector
Growth Inhibitors
Limited funds and infrastructure Technological limitation International politics
A g r i Others 5 0 c 7% % u l t u re Household Transport 32% 29% C o m m Industry 3 % e r c i 24% a l
Primary energy resource
Processing
Secondary energy resources or fuels
Transmission
Consumer
CHAPTER
2
S OLAR R ADIATION
→
Sun 9
32°
1.39 × 10 m
7
0.275 × 10 m
11
1.495 × 10 m
•
µ µ
) m / W ( r e w o p e v i s s i m E
2
2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0
5
10 15 20 Wavelength l (m)
25
30
(a)
) m / W ( r e w o p e v i s s i m E
25
2
20 15 10 5 0
5
10 15 20 Wavelength l (m)
25
30
(b)
March 21st
g S p r i n
June 21st
W i n t e r
Sun
December 22nd
n t u m u A
S u m m e r
September 23rd
Normal to elliptic plane Earth’s axis
2 3 . 5 ° ° 6 6. 5
Elliptic plane
Rav R
2
W/m
360 n W/m2 365
1 + 0.033 cos
Solar radiation Extraterrestrial region
Atmosphere (O2, N2, O3, CO2, CO and dust)
Reflected from atmosphere
Beam radiation
Scattered and diffuse radiation Reflected radiation
Terrestrial region
Earth
Path length travelled by beam radiation Vertical path length of t he atmosphere AC AB
α θ
α θ θ θ B C
Extraterrestrial
q z
Atmosphere A Earth
•
λ λ North pole
N
Latitude 90°
P O
S (a)
Latitude 0°
Latitude 0° Equator
South Pole Latitude –90° (b)
λ
N Longitude
Equator
S
•
•
N
Radial line P
W
O
Equatorial plane
S
l can vary from 0 to 90°
E
Projection of the line on equatorial plane
N Equatorial plane Sun
Earth S
360 (284 + n) 365
δ 23.45 × sin
w = 0 12 Noon 9 AM
3 PM
w = 45° w = –45° 6 PM
w = 90°
6 AM w = –90°
Vertical Sun’s ray S
Normal to horizontal plane North Horizontal plane
q z a West
East P
S
g s
South
Sun
Normal North
Inclined surface Normal
q a
West
P
g
East
Inclined surface
q b
b
Horizontal plane
Horizontal plane
q = Angle of incidence b = Tilt angle
South
•
θ λ δ β δ ω β λ δ ω β δ γ β δ γ β ω
β β θ θ θ δ λ ω δ λ
β θ λ δ γ ω λ δ γ δ γ ω
γ θ λ λ β δ ω λ β
β γ θ λ δ ω λ δ
ω
ω
ω
ω
ω
ω
ω
•
θ θ θ λ δ ω δ λ
ω λ δ
ω λ δ ω λ δ ω λ δ
Angle between sunrise and sunset 15º 2 × ω 15 2 15
×1 h
×1
× cos −1 (− tan λ tan δ )
s r u o h t h g i l y a D
22 20 18 16 14 12 10 8 6 4 2
u n e 2 1 J
21 March and 21 September 2 1 D ec e m b e r
10
20
30
40
50
60
70
Latitudes (degrees)
•
δ
360 × (284 + n) 365
δ 23.45 × sin
∴
360 × (284 + 1) 365
δ 23.45 × sin
∴
2 15 2
cos −1 [− tan λ × tan δ ] cos
1
15
[ tan (34.08)
tan ( 23.01)]
δ 23.45 sin
360 365
(284
182)
2 15
cos
1
[ tan (34.08
tan (23.12)]
•
23.45 sin
360 365
(284 172)
23.45 s in
360 365
(284
355)
T R / 0.9
e
9.4 sin
I ext
Normal
I N
Ib = I N × cos q
Earth
θ
1 3
( I ext
I N ) cos
z
•
800 ) m / 600 W ( n o i t a 400 i d a r 200 r a l o S 0
2
Global
) m / W ( n o i t a i d a r r a l o S
2
Diffuse
6 AM
9 AM 12 Solar time (a)
3 PM
6 PM
800 Global 600 400 200
6 AM
Diffuse 9 AM 12 Solar time
3 PM
6 PM
(b)
5.8 5.4
5.4 4.6 5.6
6.4 6.2
5.0
6
5.4
5.6
5.6 5.4 5.6 5.8
•
( H g ) ( H 0 ) (n ) ( N )
H g H 0
a
b
n N
•
( H 0 ) (k T ) H d H g
k T
n N
( H T )
( H T ) H T ( H g
H d ) Rb
Hd
1
cos 2
H g
1
cos 2
Rb
•
H 0
H g H 0 H g H 0
a +b×
n N
n N
360 (284 + n) 365
360 (284 + 75) 365
N
2 15 2 15
24
π 24
π
1 + 0.033 cos 360n 365
1 + 0.033 cos 360 × 75 365
89.02 × π × sin 22 × sin ( −2.42) + cos 22 × cos ( −2.42) sin 89.02 180
24
π
H g H 0
n N
9.5 11.87
∴
H g
•
2
15 2 15 2 15
•
360 (284 + n ) 365 360 (284 + 152) 365
2 15 2 15
12 − 10.4 2
• ω
δ
360 (284 + n ) 365 360 (284 + 47) 365
θ δ λ ω δ λ
∴
θ
•
360 (284 + n ) 365 360 (284 + 335) 365
•
360 (284 + 172) 365
•
•
Cloud
(a)
(b)
µ
Sensing surface/detector
Dome
Shading ring White guard plate White
Black
Thermopile lead (a) Construction
(b) Mounting
µ
Collimator tube
Diaphragm Sensor/detector (hot junction) Pivot Pivot
• • • R
w
A Shaded strip being electrically heated G Detector sensitive strip exposed to the sun
Glass sphere Brass bowl
Bar axis parallel to earth
Support Marbel base
CHAPTER
3
S OLAR E NERGY
• Solar collector
Non-Concentrating or flat plate type
Concentrating type
Focus type collector
Non-focus type collector
Line focus collector
Cylindrical parabolic collector
Point-focus collector
Fixed mirror solar collector
Paraboloidal dish collector
Linear Fresnel lens collector
Modified flat plate collector Hemispherical bowl mirror concentrator
Circular Fresnel lens concentrator collectors
Central tower receiver
Compound parabolic concentrating (CPC) type collector
• • •
Energy absorbed Solar incident energy
Ao Ar
1 sin θ max
Aperture Receiver
max max
Source
•
Aa A r
2 100 × (100)
−2
1 sin θ max
15 2
1 sin 7.5
•
Direct solar radiation Diffuse radiation Glass cover Dry air Absorber Fluid tube Insulation
(a) Fluid in
Fluid out (b)
•
Direct radiation
Reflecting mirror
Reflecting mirror
Dry air
Flat collector
Insulation
•
Direct radiaton
Parabolic mirror reflector
Parabolic mirror reflector Dry air Insulation
Flat collector
•
Concentrator
Sun’s rays
Fluid or receiver tube at the focal line
Concentrator
Fluid tube at focal point
Ac Ar
17.1 2.82
•
Fresnel lens
Refracted rays Receiver or fluid tube
Fluid tube at focal line Fresnel lens
•
Receiver at focal circle with tracking arrangement
Reference or focal circle
Mirror strips
Mirror strips
•
Parabolic surface is rotated
Parabolic dish
Absorber tube at focus
(a) Support
(b)
•
Absorber
Spherical mirror reflector
•
Fresnel lens Optical axis
Receiver
Circular zones
•
Receiver mounted on a tower
Sun rays
Heliostats
•
•
•
Gate valve T f 2
Heat exchanger T f 1
Pump
Flow meter
Heater Cold Hot water water
(T f 2
− T f
2
)
Qout Ac I g m × C p (T f 2 Ac
× I g
− T f ) 1
•
•
• • • • • •
•
To thermal plant
Solar collector
Insulated water tank From thermal plant
Pump
Heat exchanger
Cold water
Reservoir
• • • • • • •
• • •
Container Stones or pebbles
Screen to support bed of stones Air flow
• • • • • • • •
• • •
•
•
•
•
• • •
t h g i e H
r s
r s
t s Top zone
r b Density (a)
r b
Non-convective zone Bottom zone (b)
t b
t h g i e H
t s Atmospheric temperature 70–80°C t b Temperature (c)
Solar pond hot brine
Refrigerant vapour Turbine
Generator
Heat exchanger
Cold brine
Refrigerant liquid
P Condenser Pump
•
•
Hot water
Hot water for use Storage tank Cold water
Flat plate collector
Cold water
•
• •
Refrigerant vapour
Hot water
Solar pump Turbine Water for irrigation
Collector Condenser Cold water
Heat exchanger
Pump circulation
Refrigerant Feed pump liquid
Reservoir
•
• • Solar rays
Concentrator Test material
Heliostats
•
• •
Upper inlet vent Warm air South facing thick wall
Air gap Cold air
Glass covering
Lower outlet vent
•
Glass at south wall
Warm air
Cold air
Rock bed Solar collector
Shading South wall Glass
Air gap Glass
Cool air
•
• •
Condenser
Refrigerant vapour
Cold water
Hot water
Strong solution
Generator Solar collector Cold water
Solution of refrigerant and water
Absorber
High pressure liquid Expansion value Low pressure liquid
Weak solution
Pump water Strong refrigerant solution
Evaporator Liquid pump
Air or water To space to be cooled
Cold water
•
• •
Cold water
Turbine Solar collector
Compressor
Heat exchanger
Condenser
Expansion valve Evaporator
Pump Air Space to be cooled
•
• Reflector Glass cover mirror Utensils Blackened aluminum box
•
Transparent sloping roof Condensed water vapour
Water vapour due to solar heating
Basin Saline or brackish water
Condensate channel
Blackened surface of basin
Distilled water
•
• •
Receiver
Solar radiation
Heliostat
Generator Turbine Cold water Condenser Pump
•
• •
Two glass sheets with air gap Transparent wall
CHAPTER
4
S OLAR P HOTOVOLTAIC S YSTEM
l e g v n e i l s y a e g r r e c n n E i
Conduction band Forbidden band Valence band Inner filled band
Conduction band
Conduction band Conduction band Forbidden band Valence band
Valence band
Valence band (a)
Forbidden band
(b)
(c )
+4 Ge Free electron of arsenic Ge +4
+5
+4 Ge As
+4 Ge
+4 Ge Hole Ge +4
+4 Ge
+3
Al +4 Ge
p-n junction p-n junction
p-type p -type
n-type
Excess holes
Depletion layer
Excess electrons
Radiation
( ) e – e+ ( )
Junction p-type region n-type region n-type region p-type region
Photon in sunlight
e – –
e
–
Contact
n-type silicon
e
Depletion zone +
e
–
e
Neutralise e – by combining e+
+
e –
p-type silicon
e
Back electrical contact
Front metallic grid n-type silicon p-type p -type silicon Opaque back metal contact (a)
Front metallic grid (b)
•
Solar cell
•
Blocking diode Module
Bypass diode
•
•
p-type p -type
n-type
–
I
+
e
e
I – V V I 0 +
V 0c
+V
–
V / V T
[e
1]
kI q
• •
[eV / V T
1]
[eV / V T
I sc I 0
1]
1
I
Dark Isolation
I 0 V oc
V oc
V
I
p
n
Lesser isolation
I sc
Larger isolation
I sc
V
[eV / V T I I – V curve I sc I m
− 1]
Power hyperbola curve P m P = I – V = constant
V m V oc
V
Vm
I m
Voc
I sc
Vm
I m
Solar power
Vm
I m
Voc
I sc
Vm
I m
Solar power FF Voc
I sc
Solar power
•
•
h
c
1.24
•
hc
=
1.24
•
1.24 E
=
1.24 1.12
η
∴
Power output Solar power
400 50
1000 50
500
50
•
• • •
µ
µ µ
• •
Solar PV systems
Central power system
Distributed PV system
Hybrid solar PV system
Stand-alone system
Grid-interative system
Small consumer system
•
•
Blocking diode
Solar array
Maximum power point tracker
Battery charger and batteries
DC to AC converter
Load
Heaters
•
MPDT
DC to AC converter
Transformer
Grid
Load
•
•
•
•
•
•
•
CHAPTER
5
B IOGAS
µ
•
•
•
•
•
•
•
• • •
• • •
x − y − z 4 2
x y z − + 2 8 4
x + 2
z − 8 4 y
Organic material (biomass) slurry
Biogas Digester Biomass slurry (digestion slurry)
Pump Mixing tank
Digester effluent Oxidation pond
Sludge to drying bed Pump Sludge
•
• • • • • •
Gas Floating cover
Gas Floating cover
Gas Floating cover Gas holder
Digester 1
Digester 2
Digester 3
Stirrer
Biogas
Feed slurry
Gas
Sludge
Gas Inlet mixing tank
Digested slurry
Gas holder
Masonry work
Stirrer Cover
Inlet mixing tank
Gas
Cover
Level of slurry rises
Gas
Digester
Displacement tank
•
•
•
Gas Generator Turbine
Digester
Boiler
Cold water
Pump
•
Properties
Gas Fiberous Liquid
Solid/liquid Solid
Uses
Biogas
Combustible gas
Scum
Insulator
Supernatant
Effluent Inorganic solids
Biologically active
Fertiliser Waste
•
•
•
∴
2.23
0.34 × 0.18 × 7
84 1090
110 100
•
•
25−75°C → anaerobic digestion
32° C → fermentation
•
Wood pieces
Drying zone (350°) Pyrolysis zone (350–600°) Producer gas
Oxidation zone (1000–1200°) Air Ash Grate Water seal
•
Gas
Future landfilling
Gas collector placed horizontally Recirculate Sewer Leachate collection Double composite layer (plastic liner + clay)
•
•
•
CHAPTER
6
WIND E NERGY
N 85°N
West
30°N Trade winds East – 30°S
Equator
S – 85°S
Height
) s / m ( d e e p s d n i W
20
150 m
15
50 m
10
10 m
5
0
5
10
15
20
25
30
Time (min)
N
W
E
Legend
S
> 20 15–25 15–25 10–1 10–15 5 5–10 > 5
Wind speed in m/s
z
− d z
Gradient height
2000 m
) Z ( t h g i e H
Ekman layer
100 m
Planetary boundary layer
Surface layer d + z 0 0
Win ind d sp spee eed d (u Z )
z H
•
• • •
•
1 2
m
m m
P0
A
1 2 1 2 1 2
• •
v
F L
Airfoil cross-section
u0
Centre line of airfoil
v
Hub
vr
(a)
F D
C h o r d
u1 (b)
→ v
r
→
→
u v 1
Centre line (CL)
v
g f a
f ° 0 9
u1
v
F A
F L
F T
r
– v
90°
g f a
v
r
(a)
F D CL
u1
f u1
vr (b)
1 2
1 2
× R u0
•
Projected area of blades Swept area 30 × 0.30
× 62
•
W .R u0 R N
60 4 × 6 × 20
60 × 4
•
u0
u1 A0
u2 A1 A2
(a)
(b) u0
u1
y t i c o l e V
u2
Distance (c)
m m m m
m
1 2
m
1
m
2 u0
+ u2 2
m
1 2
(u0
+ u2 ) 2
m
m m ρ
(u0
+ u2 ) 2
ρ
1 4
ρ
− u1
u0
u0
u1 u0
+ u2 2 × u0
u0
− u2 2 × u0
u0
1 4 1 2
ρ ρ
ρ
1 ρ × A × u3 1 0 2
1 2
ρ
1 3
2 3
1 3
1 2
1
2
1 4
ρ
dPT du2
u0
3
1 4 1 4
2 u0 2 u u0 − u0 + 0 3 3
u2 × 8 4 0 9 3 × u0
8 27
16 27 16 27
1 2
A u03
•
d 2
60 2
1 2
1 2
16 27 16 27
•
P0
u02
2
P2
2
u2
2
u0
u1
u2
(u02
− u22 ) × 2
1 2
1 2
m m m
u0
+ u2 2
u0
+ u2 2
1 × A 2 1
2
u0
1 3
•
P0
u0
× R
u0
P0
×
× T max
C P
×
T C T
C P C T
1
C P
•
2 n×
x u0
2 n×
u0
x u0
2 n × x
× R u0
2 R n × x
2 R n × x
R
2
4 n
4 2 4π 4
0.59 1
0.5
2
0.4 C
P
3
1 ideal propeller type rotor
5
2 three-bladed rotor 3 two-bladed rotor
0.3
4 four-bladed rotor
4
6
0.2
5 Darrieus vertical rotor
0.1 0
6 Savonius vertical rotor 1
2 3 4 5 6 Tip speed ratio (l )
7
•
F L Total force u0 F D
0.5 0.4 C
P
g = 0
0.3 0.2
g = 5° g = 10°
0.1 0
4
8 12 Tip speed ratio (l )
16
20
) P e C c ( n a t n m e r i c o i f f r e f P e o c
C
0.4 0.3 0.2
A
B A
C
0.1 0
B
2
4
6
8
10
Tip speed ratio ( )
) P C e ( t u n q e r i c o i T f f e o c
0.6 A
A
B
0.4 B C
C
0.2 0
2
4 6 Tip speed ratio ()
8
10
Rotor blade
Gear train Nacelle
Generator
Hub Rotor blade
S Hub Tail vane as yaw control mechanism
Brake
Tower
Foundation
Foundation
(a)
(b)
(a)
(b)
(d)
(c)
(e)
(f)
Bearing Guy rope Cross arm
Blade
Tower (rotor shaft) Bearing Gear box Generator Foundation
Blade Cup (a)
(i) Front view
Blade (c)
(ii) Top view (b) Foldable blade
Blade
(d)
(e)
CHAPTER
7
E LECTROCHEMICAL E FFECTS AND F UE L C ELLS
e –
+
Fuel (hydrogen)
Water vapour 2e H2 Anode
2e 2e 2e 2e
2e
+
2H
+
2H E e l c t r o y l t e
2e H O 2 2e 1 O 2 2 2e 2e
Waste
Cathode
Oxidant (oxygen)
Electrolyte to coolant
Work output Change of enthalpy
W max H G
H
G n F
nFE H
G H
2,37,191 2,85,838
1 2
G nF
237.3 103 2
96,500
1 2
G H
237.3 10 286
3
3
10
G nF
1 2
H2
Fuel cell phosphoric acid
O2
H2O
1 2
H2 or H2 rich gas O2or air
Fuel cell 40% KOH
H2O
1 2
H2
Fuel cell proton conducting polymer membrane
O2
H2O
Synthetic gas Air
Fuel cell molten carbonate
H2O
Synthetic gas [H2 + CO]
Fuel cell
H2O
Air
1
2
e H2O
Cathode 2e H2
H2
2e +
2H
Anode
O2
1 O 2 2 H2O
Polymer electrolyte
1 2
e
Fuel (H2 or H2 rich gas)
Spent oxidant
2e H2
2e –
OH
–
OH
40% aqueous KOH
1 O 2 2
Oxidant (O2 or air)
Spent fuel Anode
Electrolyte to coolant
Cathode
e
H2O + CO2
H2O
2e
Fuel (H2 + CO)
CO2
2e
CO CO2
2–
CO3
H2
N2
2–
2e
CO3
1 O 2 2 CO2 Air
2–
CO3
Molten carbonate
CO2
1 2
H2
N2
2e H2 Fuel (synthetic gas)
2–
O
O
2e O2 Air
2e CO
2–
O
Porous nickel
Ceramic electrolyte
2–
Indium oxide (porous)
e Energy Fuel Oxidant
Fuel cell
Fuel
Product
Oxidant Regenerator
CHAPTER
8
H YDROGEN E NERGY
• •
2 Volt
Anode
Cathode
O2 H2 Membrane
e
e
•
• • • •
→ ←
→ ←
→ ←
CHAPTER
9
T HERMOELECTRIC S YSTEMS
FOR
D IRECT
E NERGY CONVERSION
∝
Qinput
Hot junction
Burner i
p-type semiconductor
Qinput i
Cold junction
E
n-type
Qrejected Semiconductor
Electric power ( P )
R
Qrejected
Released heat n-type bismuth telluride w o l F –
Electrode 1
e
–
e
Released heat at high temperature
–
–
+
+
–
–
+
+
–
–
+
+
Absorbed heat at low temperature – +
Absorbed heat
p-type bismuth telluride
Hole flow
Electrode 2
α α
Heat absorbed
Heat evolved
Cold
Hot
Heat evolved
Cold
Heat absorbed
Cold
Hot
Steady current
Steady current (a)
(b)
dT dx
Cold
dQ / dx dT / dx
T 2 T 1
dT
dQ
dx T 1 T 2 i
R L I
Cold
Cold Electrones Holes
A
B
Hot
R L
I
A
B
A
B
A
B
A
B
∴
(
T )
2 Ri
(
T )
2
4 Ri
u B u B
u B u B u
B z
u
B
R L
d B
u
(a)
y
E
V
(b)
Ri V
x
R L
E
(c)
B u
q
V
quB
d
V 0
q
quB
d
∴
∴
Ri
RL
V 0
2
V 0 Ri
RL
R L
V 02
4 Ri
B 2u 2 d 2
4 Ri
1
d A
1 4
2 2 u B ( Ad )
1 4
2
2
u B
I Electrode Gas R L V u Electrode Gas Magnetic Æ fiel fi eld d ( B )
t M ag n e Q Heater
1
2
Nozzle
3
DC supply
Inverter
AC supply
Converter
Compressor 5 Cooler
4
1. High pressure gas; 2. High pressure and temperature gas; 3. Ionized gas at high temperature and speed; 4. Gas at low temperature speed and ionization; 5. Low volume of gas for compression
Stack DC supply
t M ag n e
Fresh air
Fuel Combustor
Nozzle
MHD duct
AC supply
Inverter
Gases exiting boiler Hot gases
Air preheater
Boiler
Seed recover
Seed Water Heated fresh air
Steam
Pump
Steam turbine Condenser
y r e v o c e r d e e S
Water to cool
DC supply Stack
Fresh air Air purifier
Coal
Steam
Seed
n e t M a g MHD generator
Combustor Heat exchanger 1
AC supply Compressor
Steam
Gasifier Hot gases
Air
Air preheater
Inverter
Hot argon
Argon
e g 2 r r n a r e e e l s s h c i u u f f x o f f i i e b r D D t a o e H
Nozzle Heat exchanger or boiler
ST-1 Steam ST-2 Water
Argon Water
Condenser
A gr o n
Argon
i
Cold electrode or collector
e e e e
d
R L
Hot electrode or emitter
CHAPTER
10
T IDAL P OWER
Low tide Moon
Earth
High tide
High tide Low tide
High tide
High tide
Tidal range
Sea level Low tide Tidal cycle (12 h 25 mm)
Full moon
New moon Sun
Earth
First quarter
Sun
Third quarter
New moon
Spring tides
First quarter
Neap tides
Full moon
Spring tides
Third moon
Neap tides
New moon
Spring tides
Area A Sluice dh
Range R h
Reservoir
Ocean
R
∫
A.g .h.dh
0
1 2
AgR
2
1 2
10
∫
3
hdh
gA[10 2
32 ]
91 2
gA
E t
91 9.81 1025 2
50 10 6
22,350
Sea
Basin
Sea
Basin
(a)
(b) Filling
Sea
Emptying Sea
Basin
Basin
(c)
Sluiceway Sea
Upper basin Powerhouse with turbines and generators
Dam
Sluiceway
Lower basin
CHAPTER
11
G EOTHERMAL E NERGY
Geyser Pond Well bored Fissure
Water
Hydrothermal reservoir
Magma
Dry steam
Turbine Centrifugal separator
Solid matter
Cooling tower
Condenser
Excess water Production well
Reinjection well
Dry steam
r o t h a r s a o l F p a v e Hot water
Generator Turbine Cooled water
Wet steam
Condenser
Cooling tower
Warm water
Wet steam Warm water
Rejection well
Production well
Excess water
Low pressure turbine
High pressure turbine Wet steam
Cold water
Wet steam
Flash Flash evaporator evaporator (first (second stage) stage)
Cooling Cooling tower tower
Condenser Warm water Excess water
Production well
Rejection wall
Make-up water Vapour refrigerant Generator
Heat exchanger
Turbine
Hot water
Liquid refrigerant
Cooling tower
Condenser
Water Pump
Pump
Pump
Production Reinjection well
Refrigerant vapour Turbine
Cooling tower
Heat exchanger
Condenser
Water Injection well Granite
Pump
Pump
Hot water Production well
Man-made reservoir
•
•
CHAPTER
12
WAVE ENERGY
= 2
k = 2
2 × x − 2 × t
2
2
y
w
Crest
a
x
1
3
1
a
3
Trough 4
4
l
T
2
g 2
2
2
g
∴
2
×
2
1 2 1 2 1 2 1 2
1
4
2
y
2
∫ a
2
0
∫
sin 2 ( kx ) dx 1 − cos 2 ( kx )
0
kx −
4 k 1
y
2
1 2
0
sin 2 (kx)
2
PE A
1 2 1 2
1 4
KE A
1 4
TE A
PE A
1
2
KE A
4 1
+
1 4
P A
P A
TE A × T
1 f
TE A
× f
P
A
•
1 1 2
ga 2
2
T
T
156 10
4
2
1 T
1 10
E A
1 2 1 2
P A
E A
Air in
Float
Piston moves up and down with float Air pump
Anchor
Compressed air storage cylinder
Reservoir
Piston moves up and down Water out
Water in
Water motion in trough
Water motion in peak
Motion Motion
Stationary generator
Motion of connecting rod Floating generator
Connecting rod
Motion of float
Wave
CHAPTER
13
O CEAN T HERMAL E NERGY
dI dy
T1
− T 2 T 1
(27 + 273) − (7 + 273) (27 + 273)
•
•
Low pressure steam
Air removed
Generator Vacuum pump
Low pressure steam
h s a l F
Deaerator
Turbine
e r r u o t s s a e r r o p p a w v o e l t a
Condenser
Warm water Water
Cold water
Condensed steam
Warm water Cold water
Vapour refrigerant at high pressure Turbine Boiler or heat exchanger
Condenser
Liquid refrigerant Cold water
•
Water after cooling
•
• •
CHAPTER
14
E NVIRONMENT
AND
KYOTO P ROTOCOL
CHAPTER
15
S MALL HYDRO R ESOURCE
H
Generator gate valve
Hydraulic turbine
Q
•
•
Water from height
Petton wheel
Q
V
Nozzle (a)
Q
Water inlet from height
Water jet
(b) Guide vane
Guide vane
Water inlet from height Rotor with blade
Guide vanes
Tail race
Draft tube
Rotor and rotor vanes
(c)
(d)
•
•
•
•
•
•
•
•
•
•
•
η ρ
CHAPTER
16
E NERGY M ANAGEMENT
•
•
•
•
•
•
•
•
• •
•
•
•
• •
•
•
•
•
•
• • • • •
• • •
• • •
• • •
264
NON-CONVENTIONAL ENERGY RESOURCES
TABLE 16.1
Step No. Step 7
Ten steps methodology for detailed energy audit (Contd.)
Plan of action
Identify and develop Energy Conservation (ENCON) opportunities
Purpose
Step 8
Cost and benefit analysis
Step 9
Presentation of measures to top management
Step 10
Post-audit phase or Phase III and follow-up Implementation
16.4.7
Identification of energy conservation measures Consider alternative efficient means Review previously suggested technologies Conduct brainstorming to find solution Interact with suppliers for a new technology Assess cost and benefit of new technology Select the energy efficient devices Priorities their procurement as immediate medium and long-term options Top management takes decision for implementation Insure correct implementation Assess the energy saving affected.
Energy Efficiency in Indian Industry
Is the Indian industry energy efficient? If it is not, what is the reason? How is the energy efficiency improved?
Indian industry is the major consumer of energy. Its use accounts for about 50% of the total commercial energy consumed in the country. The six key industries consisting of aluminum, cement fertilisers, pulp and paper, steel and petrochemicals are reported to be consuming 65% of the total energy used in Indian industry. Some of the Indian industries are found to be consuming a higher amount of energy compared to similar industries operating in developed and advanced industrial countries. One of the main reason for higher energy use or consumption is the presence of obsolete and energy inefficient processes and technologies in some of these industries. To promote adoption of energy efficient processes and technologies, these industries have been identified by the Indian Government as designated consumers (DC) under schedule of the Energy Conservation (EC) Act. These designated consumers have to comply with various provisions of EC Act, such as (i) to meet specific energy consumption norms, (ii) to conduct regular energy audits, (iii) to implement techno-economic viable recommendations of energy audits and to establish energy management system through appointment of certified energy managers to boost the adoption of energy efficient processes and technologies.
16.4.8
Status of Energy-Efficient Technologies in India
Write briefly about the status of energy efficient technologies in India.
The new generation industrial plants installed recently in India have excellent energy efficiency norms which can be comparable to the best and most energy efficient plants in the world.
B IBLIOGRAPHY
Adelman, M.A., The Economics of Petroleum Supply, Papers by M.A. Adelman 1962–1993, The MIT Press, Cambridge, MA, 2003. Bureau of Energy Efficiency’s article on “Energy Management and Audit”. Chauhan, D.S. and Srivastava, S.K., Non-Conventional Energy Resources, New Age International, New Delhi, 2009. Gupta, A., Non-Conventional Energy Resources, Umesh Publication, 2012. Khan, B.H., Non-Conventional Energy Resources, Tata McGraw-Hill, New Delhi, 2008. Khennas, S. and Burnett, A., Micro-hydro Power: An Option for Socio-economic Development, Proceedings of the Sixth World Renewable Energy Congress, 2001. Rai, G.D., Non-Conventional Sources of Energy, Khanna Publisher, New Delhi, 2009. Sayeed, P.M., Hon’ble Minister of of Power, article, “Energy Conservation of India”, on the occasion of Energy Conservation Day on 14 December, 2005. Singhal, R.K., Non-Conventional Energy Resources, S.K. Kataria & Sons, New Delhi, 2012.
26 7
I NDEX
Absorber plate, 59 Aerobic process, 110 Aerodynamic considerations, 147 Agriculture residues, 109 Air mass (m), 32 Alkaline fuel cell, 170, 173 Alternative fuels, 19 Anaerobic digestion, 110 Anaerobic process, 110 Anemometer, 131 Angle of incidence, 36 Application of a fuel cell, 178 of hydrogen, 186 Aquatic plants, 109 Aspects of energy conservation, 253 Axial force, 137 Axial thrust on turbine, 143
Basic sun–earth angles, 34 Batch type plant, 114 Beam radiation, 32, 50, 51 Biochemical, 123 Biodiesel, 108 Bioethanol, 108 Biofuels, 107 Biogas, 106, 108, 110 Biogas plant in hilly area, 118 Biological storage, 70 Biomass, 107 conversion technologies, 122 energy, 14, 20, 22 energy programme in India, 127 gasification, 124 production efficiency, 107 resource development, 126 resources, 109
Biophotolysis, 182 Blades, 154 Bulb turbine, 244 By-product of digestion, 119
Central power station system, 102 Central tower receiver collector, 66 Ceramics fuel cell, 175 Charcoal, 108 Chemical energy, 157, 250 storage, 69 Chemical hydrides form, 182 Chord, 136 Circular Fresnel lens concentrator, 65 Clean development mechanism, 238 Closed cycle, 233 system, 198 Cogeneration, 256, 257 Collection losses, 98 Collector efficiency, 57 Collector performance testing, 67 Combustion, 163 Commercial energy resources, 3 Community biogas plants, 122 Components of a small hydropower plant, 244 of the tidal power plant, 207 Compound parabolic concentrator, 61 Compressed air, 157 Compressed natural gas (CNG), 19 Concentrating ratio, 57 Continuous type biogas plant, 115 Conversion of hydrogen, 186 of hydropower, 240 Cooling system, 80 Copper indium diselenide, 101 26 9
270
INDEX
Cost of hydrogen storage, 184 Curve factor, 99 Cylindrical parabolic concentrator, 61
Environment, 236 Environment aspects of energy, 25 Extraterrestrial radiation, 29, 30
Dam or dyke, 207 Darrieus rotor, 156 Declination angle, 35 Delivery of hydrogen, 185 Demand for energy, 251 Depletion of conventional energy resources, 254 Designing of a micro hydel scheme, 245 Detailed energy audit, 262 Diffuse radiation, 32, 51 Digester, 111 Distribution of wind energy, 129 Double basin system, 210 Drag force, 137
Fill factor (FF), 96 Fixed dome, 117 type biogas plant, 116 Fixed mirror solar concentrator, 63 Flat collectors, 67 Flat plate collector, 59 Floating drum, 117 type biogas plant, 115 Flood generation, 207 Fluid tubes or channels, 59 Focussing collectors, 67 Forests, 109 Fossil fuels, 14, 17 Free atmosphere, 132 Fuel and oxidant, 161 Fuel cell, 161, 164 Fuel pellets, 108 Fuel wood, 108
Ebb generation, 207 Efficiency of fuel cell, 166 Ekman layer, 133 Electrical energy, 251 storage, 70 Electrical systems, 152 Electrochemical effects, 161 Electrochemical reaction, 163 Electrodes, 170 Electrolysis of water, 157, 181 Electrolyte, 170 Electromagnetic energy storage, 70 Emission trading or carbon trading, 238 Energy audit and need, 261 Energy available in wind, 134 Energy chain, 26 Energy commodities, 250 Energy Conservation Act, 256 Energy conversion processes, 251 Energy crops, 109 Energy demand substitution, 252 Energy economics, 250 Energy efficiency in Indian industry, 264 Energy elasticity, 12 Energy intensity, 11 Energy losses of solar cell, 97 Energy management, 249 and audit, 260 Energy parameters, 11 Energy payback period of a solar cell, 105 Energy plantation, 126 Energy policy in India, 13 Energy position in India, 15 Energy resources, 1, 250 classification, 2
Gallium arsenide, 101 Gasohol, 20 Geothermal energy, 9, 14, 18, 21, 22, 212 Geothermal power plants, 214 Global radiation, 51 Global warming, 237 Global winds, 129 Gradient height, 132 Greenhouse effects, 25 Grid interactive solar PV system, 103
HAWT, 155 Heaving float type, 228 Horizontal axis wind turbine, 150 Hot dry rock resource, 217 Hot springs, 214 Hour angle, 35 Hub, 151 Hybrid solar PV system, 104 Hydel energy, 4 Hydro resources, 14 Hydrogen as fuel and safety issues, 185 Hydrogen energy, 179 storage, 70 Hydrothermal resources, 214
Important physical effects, 187 Incident beam, 37
INDEX
Incineration, 122 Incomplete absorption, 98 Indian and global energy resources, 12 Indian energy scenario, 15 Intensity of terrestrial radiation, 42 Irradiance, 28 Irradiation, 29
Judicious use of energy commodity, 255
Kinetic energy, 226 Kyoto Protocol, 236, 237
Latent heat storage, 72 Latitude and longitude, 33 Lift force, 137 Linear Fresnel lens collector, 62 Load characteristics, 150 Local apparent time, 38 Local winds, 129 Location of biogas plant, 120 Losses of a fuel cell, 177
Magnetohydrodynamic (MHD), 21 power conversion, 193 Materials for MHD generators, 200 for solar cells, 100 for a thermoelectric generator, 192 Measurements of solar radiation data, 50 Mechanical energy, 251 MHD systems, 197 Models of biogas plants, 118 Modified flat plate collector, 60 Module, 91 Molten carbonate fuel cell, 174
Nacelle, 151 Nature of wind, 130 Neap tides, 205 Non-commercial energy, 3 Nuclear energy, 5, 16 Nuclear resources, 14
Ocean energy, 10, 20, 22 Ocean thermal energy, 231 Ocean tidal energy, 14 Ocean wave energy, 14 Open cycle systems, 197
Orientation of flat plate collector, 67 Origin of tides, 203 of winds, 128 OTEC power plant, 10 Oxidant, 169
Paraboloidal dish collector, 64 Peltier effect, 188 Performance coefficient, 149 Photosynthesis, 106 Photovoltaic effect, 90 Pitch, 148 Planetary boundary layer, 133 Potential or tidal range power, 206 Power, 226 generation from liquid waste, 125 Powerhouse, 207 Preliminary audit, 262 Primary and secondary fuel cells, 164 Primary battery, 164 Primary resources, 2 Principle of conversion, 59 of energy conservation, 254 of fuel cell, 164 of power generation, 139 Producer gas, 108 Production of hydrogen, 180 Pyranometer, 51 Pyrheliometer, 51
Radiation spectrum from sun and earth, 27 Raw material for biogas, 112 Recycling of waste, 254 Reflection losses, 97 Regenerative cell, 172 Regenerative fuel cell, 176 Resources of geothermal energy, 212 Rotor, 135 of HAWT, 152 of VAWT, 154
Savonius rotor, 156 Secondary resources, 2 Seeback effect, 187 Semiconductors, 88 Sensible heat storage, 70 Series resistance losses, 99 Single basin system, 209 Single crystal silicon, 100 Size of biogass plant, 120
271