contoh soal dan penyelesaian kimia fisikaFull description
briineDeskripsi lengkap
pdf
Catia Generative shape designFull description
A brief overview of the fascinating phenomenon known as "shapshifting", an integral part of many aboriginal cultures, past and present, of our world.
Shape of things
contoh soal dan penyelesaian kimia fisikaDeskripsi lengkap
TABFull description
Divers articles glanés ces dernières décénies concernant la fabrication de planches à voiles artisanales.
enjoyFull description
Full description
Description complète
Appendix A – Mathematical formulae (1/5)
APPENDIX A – MATHEMATICAL FORMULAE Version Version 3.1. Jan 99. A.5. corrected equation equation for trapezium inertia .
A.1 Trigonometric functions sin x
eix
=
− e−ix
cos x
2i
sin ( A ± B ) = sin A cos B
± cos A sin B
=
e ix
+ e−ix
2 cos( A ± B ) = cos A cos B
1 m tan A tan B
sin A + sin B cos A + cos B
= 2 sin
A + B
= 2 cos
cos
2 A + B 2
A − B
cos
2 A − B 2
1
sin A sin B
= [cos( A − B) − cos( A + B)]
sin A cos B
= [sin( A + B ) + sin( A − B )]
2 1
2
1
sin 2 x
= [1 − cos 2 x]
sin 3 x
= [3 sin x − sin 3 x]
2 1
sin A − sin B
= 2 cos
cos A − cos B cos A cos B
cosh x
=
cosh ix =
2 cos x
= i sin x cosh 2 x − sinh 2 x = 1 cosh ( x ± y ) = cosh x cosh y ± sinh x sinh y sinh ( x ± y ) = sinh x cosh y ± cosh x sinh y cosh ( x ± iy ) = cosh x cos y ± i sinh x sin y sinh ( x ± iy ) = sinh x cos y ± i cosh x sin y sinh ix
2
1 2
1
= [1 + cos 2 x]
cos3 x
= [3 cos x + cos 3 x]
2 1 4
e x
− e x
2 cos ix = cosh x
sin ix = i sinh x
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 / Jan 99
2 A + B
cos 2 x
sinh x =
sin
A − B
sin
2 A − B 2
= [cos( A + B )+ cos( A − B )]
A.2 Hyperbolic Hyperbolic functions
+ e− x
A + B
= − 2 sin
4
x
sin A sin B
tan A ± tan B
tan( A ± B ) =
e
m
Appendix A – Mathematical formulae (2/5)
A.3 Standard indefinite integral Integrand
Integral
Integrand
Integral
-cos x
sinh
cosh x
cos
sin
cosh
sinh
tan
-ln (cos
tanh
ln (cosh
)
cosec
ln(tan x / 2)
cosech
ln (tanh
/ 2)
sec
ln (tan x + sec )
sech x
2 tan-1(ex)
cot
ln (sin
coth
ln (sinh x )
sec2
tan
sech 2
tanh x
sec
tanh
sech
-sech
-cosec
coth
cosech
-cosech
sin x
tan
sec
cot
cosec x
1
sin
− x 2
a2
−a
2
x
+ a2
x − cos −1 a
(
+ a2 )
(
− a2 )
or ln x + x 2
cosh −1
1 2
or
x or a 1 − x tan 1 a a
1 x
x a
sinh −1
+ a2
2
)
x a
1 x 2
−1
)
ln x + x 2
A.4 Standard substitutions for integration If the integrand is a function of : Substitute:
(a − x ) (a + x ) ( x − a ) 2
2
or
a2
− x 2
x = a sin θ
or
x = a cos θ
2
2
or
a2
+ x 2
x = a tan θ
or
x = a sinh θ
2
2
or
x 2
− a2
x = a sec θ
or
x = a cosh θ
or of the form:
{(a x + b)
p x + q
{(a x + b)
p x 2
}−
1
p x + q = u 2
+ q x + r }
−1
a x + b =
1 u
or a rational function of: sin x
t = tan
and / or cos x
whence
sin x =
2t 1 + t
2
cos x =
1 − t
2
1 + t
2
x 2
dx =
2 dt 1 + t
2
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 / Jan 99
Appendix A – Mathematical formulae (3/5)
A.5 Geometric properties of plane sections section
Position of centroid
Area
Moments of inertia I xx
e l g n a i r t
A =
bh
e x
2
=
h
I yy
3
I aa
= bh 3 / 36 = hb 3 / 48
Z xx
= bh 3 / 4 = bh 3 / 12
apex = bh 2 / 24
I bb
e l g n a t c e R
A = bd
e l g n a t c e R
A = bd
e l g n a t c e R
e r a u q S
e x
= bd 3 / 12 I yy = db 3 / 12 I xx
h
=
2
I bb
e x
A = bd
bd
=
e x
I xx
+ d 2
b2
+ d cosθ
b sin θ
2
=
e x
A = s 2
s
=
ev
= bd
=
d n o m a i D
n o g a x e H
d (a + b) e x1
2
=
= I yy = s 4 /12 I bb = s 4 / 3 4 I vv = s / 12
2
3(a + b )
2
I xx
2 s
d (2a + b )
( + d )
6 b2
= bh 2 / 24
Z yy
Z xx Z yy
Z xx
=
= bd 2 / 6 = db 2 / 6
b 2 d 2 6 b2
+ 4ab + b2 ) I xx = 36(a + b) 3 2 2 d (a + a b + ab + b I =
Z xx Z vv
= Z yy = =
2
yy
48
Z xx
s
bd
e x =
2
A = 0.866d
2
e x
d 2
= 0.866 s =
d 2
I xx I yy
I xx
= =
bd
48
=
48
= I yy = I vv = 0.0601d 4
6
3
I xx d − e x
(two values) Z yy
=
2 I yy
Z xx
=
Z yy
=
3
db
s 3
6 2
3
A =
+ d 2
Z xx
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 / Jan 99
b 3d 3
d (a
A =
/3
=
3
m u i z e p a r T
3
base = bh 2 / 12
= b2 sin 2 θ + bd (b 2 sin 2 θ + d 2 cos 2 θ ) bd d 2 cos2 θ 12 6(b sinθ + d cosθ )
I xx
=
Section Moduli
b 2
bd
24 db 2 24
= 0.1203d 3 Z yy = Z vv = 0.1042d 3 Z xx
Appendix A – Mathematical formulae (4/5)
Geometric properties of plane sections (cont.) Section n o g a t c O
A = 0.8284d
2
n s 2 cot θ
A = n r 2 tanθ A =
e l c r i C
e l c r i C i m e S
t n e m g e S
r o t c e S
2
n R sin 2θ 2
= 0.0547d
depending on
=
the axis and
=
value of n
= r =
e
A = 0.7854d 2
= I 2 A(6 R 2 − s 2 )
2
e
48
d 4
π
Z =
64
I = 0.7854r
π
d 3
32
Z = 0.7854r 3
2
= 3 base = 0.2587 r 3 crown = 0.1907 r 3 Z yy = 0.3927 r Z xx
A = 1.5708r 2
A = 2
r
2
π θ ° − sinθ 180°
θ
°
360°
π
r 2
= 0.424r
e x
e0 e x
=
A =
π
2
r 4
c
A = 0.2146r 2
3
12 A
e x
= =
θ
2 c r 3 a r 2 c 3 A
= 0.424r ev = 0.6r eu = 0.707r e x
= 0.777 r ev = 1.098r eu = 0.707r e = 0 .316r eb = 0.391r σ
π θ ° − sin 2θ 16 90° 4 3 20r (1 − cosθ ) − π θ ° − 180° sin θ 4 π θ ° − r I yy = 30° 48 8 sin θ sin 2 θ + I xx
= e0 − r cos
e x
= 0.1098r 4 I yy = 0.3927r 4 I xx
2
I xx
=
r 4
= I o −
360°
°
θ π
sin 2
θ
Z xx base = I xx / e I crown Z vv
=
I xx
=
b − e I
2 I yy c
Z xx
4r 4
2 9
4 π θ° = r − sin θ 8 180° 4 r π θ ° + sin θ I 0 = 8 180°
I yy
centre
=
crown
=
Z yy
=
I xx e x I xx r − e x
2 I yy c
= I yy = 0.0549r 4 I bb = 0.1963r 4 I uu = 0.0714r 4 I vv = 0.0384r 4
Minimum Values
= I yy = 0.0076r 4 I uu = 0.012r 4 I vv = 0.0031r 4
MinimumValues
I xx
I xx
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 / Jan 99
I
Z =
24
A(12r 2 + s 2 )
I =
d
= Z yy
= 0.1095d 3 Z vv = 0.1011d 3
4
I 1
Section Moduli Z xx
= I yy = I vv
I xx
= r or R
e x
t n e m e l p m o C
d
A = π r 2
A =
t n a r d a u Q
Moments of inertia
2 ev = 0.541d
e
4
=
e x
= 0.4142d
s
A =
n o g y l o P
Position of centroid
Area
= Z yy = 0.0953r 3 Z uu = 0.1009 r 3 Z vv = 0.064r 3 Z xx
= Z yy = 0.0097 r 3 Z uu = 0.017r 3 Z vv = 0.0079r 3 Z xx
m 2 m 2 2 / 2 2 m / N / m m m f m m 5 / g / N / 9 N k N k N 8 6 7 2 8 3 . 4 0 0 8 8 . 7 4 . 0 8 8 . . . 7 0 5 0 9 4 4 1 1 = = = = = =
2 2 n 2 2 2 2 t f i
t n / m t / i f f f / f / / / f f f f n n g b o t o l k b l b l t 1 1 1 1 1 1 2 t f 2
n / f i f n / o n f t n / m / i o f b / f l f g b 4 t l b 2 5 l k 8 9 8 3 7 0 2 4 0 9 4 . 0 2 0 6 5 0 4 1 . 2 . 0 . 0 . 0 . 1 0 0 0 0 0 = = = = = =
g n i m 2 m 2 m m d m / m / f / m / m a o / g N / L N N k N k N s s p e r 1 1 1 1 1 1 i r t t S S 2
2
2
m . f g m m m k N m N k N 2 5 0 N 1 7 1 3 6 3 0 1 1 5 5 8 . 0 . 1 . 3 . 2 . 9 0 0 1 0 = = = = =
t f t m t / f f / f / f / f f g b b n o k l l t 1 1 1 1
n n i n i n i . m i . f . f . f . n f f g b b o k b l l l t 1 1 1 1 1
t f / f t f n t m / f / f o f b / t f g l b 9 k 0 l 5 2 2 3 0 0 7 5 . 3 1 . 6 . 8 0 . 0 0 6 0 = = = =
2 t f 2 2 t f / 2
m m / m / m f N / / g k N N k 6 k 7 8 4 9 0 8 1 6 . 8 . 4 . 0 . 2 9 1 0 3 = = = =
m m m m / f / / t / g N N n N k k k e 1 1 1 1 m o M
m m 0 0 2 6 1 4 =
3
n i 1
4
3
4
2
n i / f b l 1
2
n i / f b l 0 0 . 5 y 4 t 1 i c = i t s a l E 2 f m o m . m s / f m g m m N l u m N k N N k u N 1 1 1 1 1 d o 1 M t i n n i n f . m . f i . f . f . b n f f g b l o k b l l 6 t 2 0 1 7 1 0 8 5 . 5 3 1 . 6 8 . 7 . 9 . 0 8 8 0 3 = = = = =
2
m m m 8 4 0 4 4 4 . 0 1 5 3 . 9 . 2 0 0 = = =
2 2 2 m
m m 0 9 1 2 6 . 2 3 5 9 0 4 . 8 . 6 0 0 = = =
m / e m n / g n o k t 2 9 0 . 2 6 3 . 1 1 = =
3
3 3
3 m m m 2 m 6 0 3 4 9 8 2 3 0 6 6 . 7 . 1 0 0 = = =
N N N k 7 8 4 0 4 6 8 . 4 . 9 . 9 4 9 = = =
3
d n t i f y 1 1 1
d y t / f / n b o l t 1 1
3
3 3 t d
3
n b o l t 1 1
n o t b l 2 5 4 0 8 2 . 9 . 2 0 = =
d n t i f 1 1 1
n i d 7 t 3 f 9 1 4 3 8 9 0 . 2 . 0 . 0 3 1 = = =
2 2
2
d n t i f y 1 1 1
2
n 2 i t d 5 2 5 f y 1 6 6 0 7 . 9 0 . 0 1 . 0 1 1 = = =
3 3
3
f f f n g o k b l t 1 1 1
y f / / b l n o 2 t 4 4 2 2 6 5 0 . 7 . 0 0 = =
n i 3 1 3 d 6 t f y 0 0 2 8 0 3 . 0 0 . 5 3 . 0 3 1 = = =
f n f f o g b l t k 8 4 2 4 0 0 2 0 1 . 2 . 1 . 0 0 0 = = =
3
e e 3 2 n h t m m m m 2 2 3 3 n s g o g a u m s k l t m m m m m m m m e n a e 1 1 1 r 1 1 1 o 1 1 1 1 1 M L A V
y t i s n e D
m / e m n / g n o k t 1 1
3
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 / Jan 99
e c r o F
n i 1
n n i i 6 6 0 0 1 1 x x 1 a 3 0 0 . e r 4 1 A . 6 2 f = o = s t u n l e u d m o o 3 M m M 4 m n m d m o n i t 1 o 1 c c e e S S