1
Skenario 1: “Kram” Seorang anak laki-laki berusia 10 tahun diantar oleh ibunya ke praktek dokter karena mendadak tungkai kirinya kram setelah berenang. Setelah ditanya oleh dokter ternyata anak tersebut tidak melakukan pemanasan terlebih dahulu sebelumnya. Selanjutnya, Ibu anak tersebut bertanya tentang apa yang terjadi pada anaknya. Oleh dokter dijelaskan tentang mekanisme terjadinya kontraksi otot tersebut dan otot-otot apa saja yang terlibat di dalamnya. Setelah dijelaskan tentang hal tersebut diatas, oleh dokter diberikan terapi untuk menangani kram tersebut. I.
Klarifikasi Istilah 1.
Kram
:. Kram adalah kontraksi tiba-tiba, singkat, yang sakit sekali pada
otot atau kelompok otot. Kram juga bisa diartikan kontraksi otot tertentu yang berlebihan, terjadi secara mendadak tanpa disadar (1) 1.
Kontraksi
: Pemendekan atau penyusutan otot karena adanya tegangan.
2.
Otot
: Organ yang bisa menghasilkan gerakan dengan cara kontraksi
alat gerak aktif. 3.
Mekanisme
: Cara kerja sesuatu atau sistem kerja.
4.
Pemanasan
: Gerakan pelemasan sebelum olahraga untuk mencegah
penimbunan asam laktat agar tidak keram dan memperlancar aliran darah. 5.
Tungkai
6.
Terapi
: Bagian kaki dari atas paha sampai telapak kaki. (2) : Kegiatan teratur untuk kembali memulihkan keadaan atau
kesehatan seseorang. 7.
II. 1
Olahraga
: Aktifitas untuk membuat kebugaran jasmani pada tubuh.
Menentukakan masalah
2
1. Bagaimana mekanisme terjadinya kram? 2. Apa penyebab kram? 3. Apa fungsi pemanasan dalam olahraga? 4. Bagaimana mekanisme kontraksi otot? 5. Otot-otot apa saja yang berpengaruh pada kram? 6. Bagaimana pencegahan dan penanganan pada kram?
III.
Analisis masalah 1. Bagaimana mekanisme terjadinya kram?
Jawab : Ganong (1998) menguraikan bahwa rangsang berulang yang diberikan sebelum masa relaksasi akan menghasilkan penggiatan tambahan terhadap elemen kontraktil, dan tampak adanya respon berupa peningkatan kontraksi. Fenomena ini dikenal sebagai penjumlahan kontraksi. Tegangan yang terbentuk selama penjumlahan kontraksi jauh lebih besar dibandingkan dengan yang terjadi selama kontraksi kedutan otot tunggal. Dengan rangsangan berulang yang cepat, penggiatan mekanisme kontraktil terjadi berulang-ulang sebelum sampai pada masa relaksasi. Masing-masing respon tersebut bergabung menjadi satu kontraksi yang berkesinambungan yang dinamakan tetanik atau kontraksi otot yang berlebihan (kram otot). Menurut Corwin (2000) setiap pulsa kalsium berlangsung sekitar 1/20 detik dan menghsilkan apa yang disebut sebagai kedutan otot tunggal. Penjumlahan terjadi apabila kalsium dipertahankan dalam kompartemen intrasel oleh rangsangan saraf berulang pada otot. Penjumlahan berarti masing-masing kedutan menyebabkan penguatan kontraksi. Apabila stimulasi diperpanjang, maka kedutan-kedutan individual akan menyatu sampai kekuatan kontraksi maksimum. Pada titik ini, terjadi kram otot sampai dengan tetani yang ditandai oleh kontraksi mulus berkepanjangan. Menurut Ganong (1998) satu potensial aksi tunggal menyebabkan satu kontraksi singkat yang kemudian diikuti relaksasi. Kontraksi singkat seperti ini disebut kontraksi kedutan otot. Potensial aksi dan konstraksi diplot pada skala waktu yang sama. 2
3
Kontraksi timbul kira-kira 2 mdet setelah dimulainya depolarisasi membran, sebelum masa repolarisasi potensial aksi selesai. Lamanya kontraksi kedutan beragam, sesuai dengan jenis otot yang dirangsang. (3) 2. Apa penyebab kram?
• Gangguan elektrolit dalam otot Ini diakibatkan kurangnya pemanasan sebelum olahraga. Akibatnya, sirkulasi darah di otot kurang lancar. Selain itu, bisa juga karena penimbunan zat-zat sisa metabolisme dan kepanasan. Alhasil, terjadi tegangan atau kerutan otot yang hebat.
• Kerja otot berlebihan Misalnya, mengetik sambil tengkurap atau duduk sambil melipat kaki dalam waktu lama. Kram juga terjadi jika kita berolahraga terlalu berlebihan sehingga otot menjadi kaku dan kejang. Sementara kram di daerah leher bisa terjadi karena kita terlalu lama menunduk.
• Kekurangan mineal dan vitamin B Salah satu fungsi vitamin B adalah menyediakan energi untuk pergerakan otot. Kalau kita kekurangan vitamin B, energi bagi otot pun ikut berkurang. Akibatnya terjadilah kram otot. Penyebab lainnya adalah kekurangan mineral seperti zinc, kalsium, kalium, dan potasium. •
Terganggunya bagian saraf tepi Misalnya, gangguan pada fungsi pengatur indera perasa, akibat saraf mengalami tekanan (misalnya duduk terlalu lama). Bisa juga karena saraf terjepit (karena pengapuran pada tulang belakang). Atau saraf robek/putus akibat kecelakaan. Sering pula terjadi rusaknya saraf tersebut karena gangguan pada pembuluh darah (misalnya pada penderita diabetes), konsumsi
3
4
minuman beralkohol, merokok. Selain itu, kekurangan nutrisi, khususnya vitamin-vitamin neurotropik juga mengambil peran cukup penting yang tidak boleh diabaikan. Apalagi, 3K ini juga dapat menjadi gejala penyakit lain yang lebih serius, seperti kolesterol tinggi dan kecing manis (diabetes mellitus). Jenis penyakit lain yang fungsi saraf adalah bell’s palsy, tortikolis, frozen shoulder, dan carpal tunnel syndrome.
3. Apa fungsi pemanasan dalam olahraga? Jawab : Pada saat kita berolahraga, otot akan bekerjan atau berkontraksi lebih keras dari keadaan normal. Hali ini sering mengakibatkan kurang lancarnya sirkulasi darah serta ketegangan pada otot. Jika sebelum olahraga dilakukan pemanasan terlebih dahulu, reaksi otot akan berbeda. Otot akan lebih siap karena sirkulasi darah di otot lebih lancar. Fungsi lainnya adalah meningkatkan kemampuan jaringan penghubung dalam gerakan memanjang atau meregang. 4. Bagaimana mekanisme kontraksi otot? Jawab : Potensial aksi -> saraf motorik-diujung serabut otot -> Setiap ujung menyekresi substansi neutotransmitter/asetilkolin dalam jumlah sedikit -> Asetilkolin membuka banyak kanal-kanal bergerbang asetilkolin melalui molekul-molekul protein terapung diatas membran -> Potensial aksi menimbulkan depolarisasi, aliran listrik mengalir melalui pusat serabut otot, disebut setikulum -> Sarkoplasma melepas ion kalsium -> Ion kalsium menarik filament aktin dan miosin saling bergeser kemudian kontraksi -> kurang dari satu detik ion kalsium dipompa membrane ca ++ ion kalsium dari myofibril menyebabkan kontraksi otot. (3)
5. Otot-otot apa saja yang berpengaruh pada kram? Jawab: Otot-otot yang terlibat pada kram tungkai :
4
5
Tungkai atas : Fascia anterior tungkai atas : • M. Sartorius • M. Iliacus • M. Psoas • M. pectineus • M. Qudriceps femoris Fascia posterior tungkai atas : •
M. Biceps femoris
•
M. Semimembranosus
•
M. Semitendinosus
•
M. Adductor magnus
Fascia media tungkai atas : •
M. Gracilis
•
M. Adductor longus
•
M. Adductor brevis
•
M. Adductor magnus
•
M. Obturatorius externus
Tungkai bawah Fascia anterior tungkai bawah : •
M. Tibialis anterior
•
M. Ekstensor digitorum longus
•
M. Peroneus tertius
•
M. Ekstensor hallucis longus
•
M. Ekstensor digitorum brevis
Fascia lateral tungakai bawah : 5
6 •
M. Peroneus longus
•
M. Peroneus brevis
Fascia posterior tungkai bawah : Kelompok superficial •
M. Gastrocnemius
•
M. Plantaris
•
M. Soleus
Kelompok profunda •
M. Popliteus
•
M. Digitorum longus
•
M. Fleksor hallucis longus
•
M. Tibialis posterior (4)
6. Bagaimana pencegahan dan penanganan pada kram? Jawab : Pencegahan : 1. Lakukan peregangan otot dan latihan pemanasan saat sebelum berolahraga 2. Hindari melakukan kegiatan olahraga yang terlalu berat serta tibatiba. 3. Jangan lupa melakukan pendinginan setelah berolahraga 4. Minum cairan cukup 8 gelas/hari 5. Minum cairan elektrolit 6. Diet tinggi kalsium,potasium,magnesium Penanganan :
6
7
1. Jika terjadi kram, maka yang harus dilakukan adalah otot yang kram diregangkan 2. Meluruskan bagian seperti kaki atau tangan yang terkena kram 3. Kompres dengan air hangat 4. Minum air putih sebanyak-banyaknya untuk mengganti cairan yang hilang.
V.
Sasaran Belajar 1. Anatomi ( Ekstremitas inferior secara umum) 2. Fisiolgi ( mekanisme kontraksi otot) 3. Histologi (jaringan yang terkena) 4. Biokimia (siklus kontrkasi dan relaksasi otot)
VI.
Belajar Mandiri
VII.
Hasil Diskusi 1. Anatomi Musculi pada Extremitas inferior (4)
7
8
8
9
Gambar Extremitas bawah
9
10
10
11
11
12
Musculi pada regio gluteal
12
13
2. Fisiologi A. Mekanisme Umum Kontraksi Otot Transmisi impuls dari saraf ke otot rangka melalui sinapsis neuro muscular. Otot rangka diinervasi oleh serabut saraf yang bermielin yang asalnya sebagian besar dari medula spinalis akhir dari saraf membuat hubungan dengan otot lewat sinapsis neuro muscular. Sinap akson muscarini terjadi penghantaran rangsang dari serabut saraf ke otot. Dimana neuro transmiternya berupa asetil kolin yang akan ditangkap oleh reseptornya pada membran sel otot. Kemudian akan timbul potensial aksi disepanjang membran otot yang akan menyebabkan kontraksi otot. Terdapat tubulus T(transverse tubulus) yang merupakan suatu kanal yang masuk ke sel otot, yang berada di samping miofibril. Potensial aksi pada membran 13
14
sel otot akan mencapai miofibril melalui tubulus T. Disekitar miofibril terdapat retikulum sarkoplasmik yang mengitari miofibril. Ketika potensial aksi mencapai retikulum sarko plasmik maka menyebabkan pompa Ca+ dari retikulum sarkoplasmik ke miofibril. Miofibril tersusun dari komponen aktin dan miosin. Filamen aktin tanpa kehadiran kompleks tropomiosin-tropomin akan berikatan kuat dengan miosin.? jika ada magnesium dan ATP. Pada kenyataanya terdapat kompleks tropomin-tropomiosin yang menutup sisi aktif pada aktin sehingga tidak terjadi ikatan antara aktin dan miosin. Tahapan-tahapan kontraksi pada aktin dan miosin : a.
Sebelum kontraksi dimulai kepala dari miosin berikatan dengan ATP. ATPase pada kepala miosin secara cepat akan memecah ATP menjadi ADP dan Pi. Pada tahap ini konformasi dari kepala miosin akan bergerak ke depan tegak lurus terhadap aktin, tanpa berikatan dengan aktin.
b.
Selanjutnya sekresi ion kalsium dari retikulum sarkoplasmik dalam jumlah besar sebagai respon dari potensial aksi. Ion kalsium akan berikatan dengan troponin, dimana troponin pada tahap selanjutnya akan menggerakkan tropomiosin menjauhi sisi aktif dari aktin. Kemudian kepala miosin akan berikatan dengan aktin pada sisi aktif itu.
c.
Ikatan antara kepala miosin dan sisi aktif aktin menyebabkan perubahan konformasi dari kepala miosin, menyebabkan kepala miosin menarik filamen aktin bergerak ke arah garis M. Terjadi overlaping antara filamen aktin yang menyebabkan pemendekan pada zona H dan zona I zona A tetap.
d.
Ketika kepala miosin bergerak miring menuju garis M terjadi pelepasan ADP and Pi. Hal ini akan menyediakan sisi ikatan baru untuk ATP. Ikatan ATP dengan kepala miosin akan menyebabkan lepasnya ikatan antara kepala miosin dengan aktin.
e.
Setelah kepala lepas dari aktin molekul ATP baru yang terikat tadi akan dipecah menjadi ADP dan Pi.
f.
Kemudian kepala miosin akan berikatan dengan sisi aktif aktin yang baru.
g.
Proses ini akan berlangsung lagi dan lagi sampai aktin tertarik sampai garis, (Guyton, 1991).
14
15
Relaksasi (terjadi akibat transport aktif kembali ke retikulum sarkoplasmik) 1.
Konsentrasi ion kalsium di dalam retikulum sarkoplasmik,
2.
Ion kalsium berdifusi menjauhi troponin,
3.
Troponin dan tropomiosin kemudian membenahi posisi dengan memblok sisi aktif dari molekul aktin,
4.
Jembatan penyeberangan tidak terbentuk kembali, dan terjadilah relaksasi muskulus,
5.
Transport aktif ion kalsium ke dalam retikulum sarkoplasmik juga membutuhkan ATP (Guyton, 2006).
15
16
2.
Pembentukan asam laktat reaksi anaerob (jalur glikolisis) a. otot dapat berkontraksi secara singkat tanpa memakai oksigen dengan menggunakan ATP yang dihasilkan melalui glikolisis anaerob. Langkah pertama dengan respirasi seluler
16
17
b. glikolisis berlangsung dalam sarkoplasma, tidak memerlukan oksigen dan melibatkan pengubahan satu molekul glikosa menjdai dua molekul asam piruvat c. glikolisis anaerob berlangsung cepat tetapi tidak efesien karena hanya menghasilkan dua molekul ATP per molekul glukosa. Glikolisis dapat memenuhi kebutuhan ATP untuk kontraksi otot dalam waktu singkat jika persendian oksigen tidak mencukupi. d. Pembentukan asam laktat dalam glikolisis anaerob i.
Tanpa oksigen, asam piruvat diubah menjadi asam
laktat ii.
Jika aktivitas yang dilakukan sedang dan singkat,
persendian oksigen yang adekuat akan menghalangi akumulasi asam laktat iii.
Asam laktat berdifusi ke luar dari otot dan
dibawa ke hati untuk disintesis ulang jadi glukosa. Siklus Cori: gambar? •
Merupakan siklus asam laktat pada SDM & otot utk kembali mjd glukosa selama respirasi anaerobik.
•
Bila otot memerlukan E yang cepat untuk bergerak, sel otot cenderung melakukan glikolisis secara anaerobik untuk menghasilkan ATP dalam jumlah yang melimpah.
•
Laktat selanjutnya di curahkan dlm darah dan dibawa ke hati.
•
Pada hati laktat dikonversikan menjadi piruvat oleh LDH.
•
Selanjutnya piruvat dikonversi menjadi glukosa melalui proses glukoneogenesis.
•
Glukosa akan digunakan utk menghasilkan E pada SDM & otot.
•
Siklus Cori memerlukan 4 ATP dari 2 ATP hasil glikolisis anaerobik dan memerlukan 6 ATP pada glukoneogenesis
•
Laktat diproduksi dari Piruvat kemudian dibawa oleh darah menuju Hepar.
•
Di hepar laktat akan dikonversi menjadi glukosa melalui proses glukoneogenesis.
•
Glukosa akan dibawa kembali di otot oleh darah sebagai substrat untuk glikolisis.
17
18
•
1 siklus Cori didalam hepar diperlu 6 ATP untuk setiap 2 ATP yang dihasilkan dari proses glikolisis, sehingga netto ATP yang diperlukan adalah 6-2 = 4 ATP.
•
Namun demikian, siklus Cori dilakukan oleh organisme untuk mengakomodasi fluktuasi sejumlah besar kebutuhan E otot skelet dalam keadaan rest maupun exercise.
•
Asam laktat terakumulasi pada otot skelet selama exercise anaerobik yang intensive sehingga menyebabkan nyeri otot yang bersifat sementara.
•
Timbunan asam laktat secara cepat akan dibuang dari otot pada metabolisme aerobik.
•
Delayed onset muscle soreness biasanya muncul lebih dari 24 jam setelah exercise yang disebabkan oleh buildup asam laktat.
•
Asam laktat merupakan asam karboksilat dengan rumus kimia C3H6O3.
•
Strukturnya merefleksikan nama sistematik : asam 2hidroksipropanoat. Penimbunan Asam Laktat Sewaktu otot bekerja berlebihan, maka akan terjadi pelepasan kalsium yang meregulasi kontraksi dan aktivitas metabolik. Selama itu pula akan terjadi peningkatan konsentrasi kalsium dan kemudian kalsium ini men-turns on otot sehingga otot akan berada dalam kondisi tegang (kontraksi) terus menerus serta mengakibatkan kelelahan otot dan jaringan tubuh. Di samping itu, kebutuhan otot akan oksigen juga meningkat 70 kali di atas normal (istirahat). Kebutuhan yang cepat dan panjangnya kelelahan otot akan meningkatkan aliran darah lokal, begitu pula densitas pembuluh darah pada otot yang bersangkutan akan meningkat. Sebagai akibatnya, aktivitas otot ini membutuhkan suplai oksigen, nutrisi dan hormon-hormon dalam jumlah yang lebih banyak. Kondisi seperti ini juga menyebabkan tubuh tidak dapat mengusir produksi panas dan produk metabolik lain seperti asam laktat. Pemuaian dan peningkatan kapiler terjadi karena stres dinding pembuluh darah, sehingga aliran dan tekanan darah akan meningkat pula. Akumulasi asam laktat selama kerja fisik berat merupakan suatu proses pertahanan tubuh berupa oksidasi asam laktat yang dibuat konstan. Bila ambang batas ini terlewati, maka 18
19
akan terjadi proses glikolisis aerob. Semua ini dilakukan oleh tubuh sebagai upaya menyimpan energi karena asam laktat dapat dipecah kembali bila terdapat cukup oksigen yang bisa diperoleh bila kita cukup beristirahat. Pemecahan asam laktat tersebut dapat dipakai kembali oleh tubuh menjadi sumber energi baru. Jadi asam laktat sebenarnya bukanlah produk buangan, tetapi merupakan mekanisme tubuh untuk mempertahankan diri terhadap stres karena kerja berat. Pada saat istirahat, oksigen secara perlahan tapi pasti akan tercukupi dan asam laktat akan digunakan sebagai sumber energi kembali. Timbunan asam laktat menurunkan pH otot sehingga kapasitas serat otot menurun, menimbulkan rasa lelah. Asam laktat dibawa ke liver, dan diubah kembali menjadi asam piruvat jika oksigen telah cukup kembali. Pada respirasi anaerob hanya dihasilkan 2 ATP (per 1 molekul glukosa)
3. Histologi Terdapat 3 jenis jaringan otot dalam tubuh, yaitu otot polos, otot jantung, dan otot lurik (rangka) -> berdasarkan morfologi dan fungsi. Semua jaringan otot terdiri atas sel-sel panjang disebut serat. Setiap sitoplasma serat otot mengandung banyak miofibril yang mengandung dua jenis filamen kontraktil yaitu aktin dan miosin. (6) a) Otot polos
19
•
Filamen aktin dan miosin tidak tersusun dalam pala bergurat, tampak polos
•
Bersifat involunter (tidak sadar) dan memiliki satu inti dipusat
•
Bentuk fusiform (seperti kumparan), banyak dijumpai melapisi organ viseral (organ dalam) dan pembuluh darah
•
Pada organ viseral berongga, contoh: saluran cerna, uterus, ureter -> berupa lembaran pada pembuluh darah -> bentuk melingkar atau sirkular untuk mengendalikan tekanan darah.
•
Kontraksi lemah
•
Lambat
20
b) Otot jantung •
Terdapat dalam dinding dan septa jantung serta dalam dinding pembuluh besar yang langsung melekat pada jantung
•
Terdapat gurat melintang karena aktin dan miosin serupa dan teratur
•
Bersifat involunter, berkontraksi secara ritmik dan otomatis yang diatur oleh saraf otonom
•
Memiliki 1 atau 2 inti ditengah dan bercabang
•
Ujung terminal serat-serat otot bersebelahan membentuk kompleks lautan “end to end” disebut diskus interkalaris dengan membran sel yang bersebelahan saling berkontraksi dan membentuk taur rekah (gap junctions)
•
Kontraksi kuat
•
Cepat dan bersambung
c) Otot lurik (rangka) •
20
Otot ini berperan dalam terjadinya kasus kram
21
•
Bersifat volunter (sadar). Filamen aktin miosin teratur yang tampak seperti gurat-gurat melintang. Punya bagian gelap (pita A) dan terang (pita B)
•
Multinuklear dengan inti tersebar diperifer
•
Terdapat, a. Epimisium : jaringan ikat padat yang membungkus keseluruhan otot rangka b. Perimisium : jaringan ikat kurang padat yang membungkus berkas serat otot rangka c. Endomisium : lapisan tipis serat jaringan ikat yang membungkus setiap serat otot
21
•
Dipersyarafi oleh akson, setiap serat otot rangka memiliki tempat berakhirnya akson (akson terminal) yang disebut motor endplate (taur neuromuskular) yang merupakan tempat impuls dipindahkan dari akson ke serat otot rangka
•
Kontraksi kuat
•
Cepat dan tidak bersambung
22
4. Biokimia
Otot lurik rangka Otot rangka diperlukan untuk kerja yang cepat dan mungkin untuk waktu yang lama seperti m. erector trunci. Unit yang bekerja dalam otot ini adalah sarkomer. Unit ini tersusun dari beberapa jenis protein dan kalsium. Dalam proses ini memerlukan kemampuan untuk mengubah energi kimia menjadi energi mekanik oleh suatu molekul. Kemampuan untuk memperoleh energi dibantu oleh ATPase. Molekul yang mampu menyebabkan perubahan dampak mekanik yaitu mekanoenzim seperti miosin. Dampak mekanik yang terjadi yaitu adanya proses peluncuran (sliding) antara miosin terhadap aktin mekanisme sudah dipelajari di fisiologi kontraksi otot rangka. •
Miosin: memiliki struktur yang terdiri atas dua bagian yang terpolarisasi secara struktural dan fungsional. Miosin juga terdapat tangkai atau ekor fibrosa yang terdiri atas dua buah heliks-α yang panjang dan saling terpilin. Masing-masing heliks tersebut memiliki bagian kepala globular yang terikat pada salah satu ujung. Molekul heksamer (miosin) terdiri atas satu pasang rantai berat (H, heavy chain) dan dua pasang rantai ringan (L, light chain). Kepala miosin memiliki aktivitas untuk mengikat aktin membentuk aktinomiosin (aktin-miosin) dan aktivitas ATPase intrinsiknya meningkat secara nyata dalam kompleks ini. Dalam aktivitas ATPase juga diperlukan ion Mg2+.
•
Aktin: G-aktin monomerik menyusun protein otot sebanyak 25% berdasarkan beratnya. Pada kekuatan ion fisiologik dan dengan adanya Mg 2+, G-aktin melakukan polimerisasi nonkovalen hingga terbentuk filamen heliks ganda tak larut yang dinamakan F-aktin. Aktin juga memiliki aktivitas ATPase dengan bantuan ion Mg2+. Hidrolisis ATP juga diperlukan dalam polimerisasi G-aktin untuk membentuk tempat peluncuran dari miosin dalam kontraksi otot.
•
Troponin: dalam kontraksi otot juga dibantu oleh troponin dan Ca2+. 1. Troponin membantu dalam mengatur kontak ikatan hidrogen antara kepala miosin dan unit monomer aktin. Fungsi troponin ini juga tergantung jenis troponin yaitu TpT, TpC, dan TpI. Keadaan ini disebut sebagai fase relaksasi 22
23
dimana kepala miosin melakukan hidrolisis ATP menjadi ADP + Pi, tetapi kedua produk ini tetap terikat. Resultan kompleks ADP-Pi-miosin telah mendapatkan energi dan berada dalam bentuk yang dikatakan sebagai bentuk energi-tinggi. 2. Ketika muncul impuls saraf, maka akan terjadi pengeluaran Ca 2+ dari retikulum sarkoplasma maka aktin akan dapat terjangkau dan kepala miosin akan menemukannya, mengikatnya serta membentuk kompleks aktin-miosinADP-Pi (fase kontraksi). Proses pelepasan Ca2+ dapat dijelaskan sebagai berikut: dari sarkolema, tubulus T akan menjorok ke dalam. Gelombang depolarisasi, yang dibangkitkan oleh rangsang saraf, dihantarkan dari sarkolema menuju tubulus T. Kemudian gelombang depolarisasi ini dibawa ke saluran pelepasan Ca2+ (reseptor rianodin) ; proses ini mungkin berlangsung melalui interaksi dengan reseptor dihidropiridin (saluran voltase Ca 2+ lambat). Pelepasan Ca2+ dari saluran pelepasan Ca2+ ke sitosol dan kemudian mengawali terjadinya kontraksi (mekanisme kontraksi akibat ikatan ion Ca 2+ sudah dibahas di fisiologi kontraksi otot rangka). Selanjutnya, Ca2+ dipompakan kembali ke dalam sisterna retikulum sarkoplasmik oleh Ca2+ ATPase (pompa Ca2+) dan disimpan disana; sebagian Ca2+ terikat dengan kalsekuestrin yaitu protein yang dapat mengikat kalsium 40 kali lebih banyak daripada yang terjadi pada keadaan ionik, jadi menghasilkan peningkatan penyimpanan kalsium 40 kali lipat lebih banyak. 3. Pembentukan kompleks aktin-miosin-ADP-Pi meningkatkan pelepasan Pi yang akan memulai cetusan kekuatan. Peristiwa ini diikuti oleh pelepasan ADP dan disertai dengan perubahan bentuk yang besar pada kepala miosin dalam hubungannya dengan bagian ekornya yang akan menarik aktin ke arah bagian pusat sarkomer. Kejadian ini dinamakan power stroke (cetusan kekuatan). Miosin kini berada dalam keadaan berenergi rendah yang ditunjukkan sebagai aktin-miosin. 4. Molekul ATP yang lain terikat pada kepala miosin dengan membentuk kompleks aktin-miosin-ATP.
23
24
5. Kompleks miosin-ATP mempunyai afinitas yang rendah terhadap aktin, dan dengan demikian aktin akan dilepaskan. Tahap terkahir ini merupakan komponen relaksasi yang sangat penting dan bergantung pada pengikatan ATP dengan kompleks aktin-miosin. Hidrolisis ATP terhadap siklus aktin dan miosin (langkah 1-5) dapat dilihat dalam diagram sebagai berikut. (7)
24
25
Dukungan Energi Dalam menjalankan peran untuk melakukan kontraksi otot rangka maka diperlukan energi berupa ATP karena protein utama penyusun otot rangka adalah aktin dan miosin yang mengandung ATPase untuk melakukan pemecahan ATP dalam menghasilkan energi. ATP disintesis dalam metabolisme nutrien yaitu metabolisme karbohidrat dan triasilgliserol (trigliserida). •
Metabolisme karbohidrat melalui dua tahap yaitu glikolisis (dalam keadaan anaerob) dan siklus asam sitrat atau siklus Kreb’s (dalam keadaan aerob). Metabolisme ini sudah pernah dibahas yang terkait rantai respirasi ketika dulu modul Sel dan Genetika dan modul Biologi Molekuler. Jadi, mungkin bisa dibaca lagi materi dulu untuk mengingat kembali.
•
Metabolisme trigliserida melalui rantai β-oksidasi. Dalam reaksi ini, dua atom karbon dipecah sekaligus dari molekul asil-KoA, dengan dimulai pada ujung karboksil. Rantai tersebut diputus di antara atom karbon α(2)- dan β(3)-. Unit dua karbon yang terbentuk adalah asetil-KoA; dengan demikian, palmitoil-KoA membentuk delapan molekul asetil-KoA. Oksidasi asam lemak ini mampu menghasilkan sejumlah 96 mol ATP dari 8 mol Asetil-KoA.
Di dalam otot juga mengandung glikogen yang cukup besar dan ini menjadi polimer cadangan glukosa. Untuk memperoleh ATP dalam jumlah besar, metabolisme harus dalam keadaan aerob yang didapat dari glikolisis + rantai respirasi + siklus Kreb’s atau β-oksidasi + rantai respirasi + siklus Kreb’s. Oleh karena itu, mitokondria yang memiliki peran penting 25
26
dalam rantai respirasi harus berada dalam jumlah yang banyak dan letaknya harus tepat yaitu disusun mengelilingi sarkomer. Agar asupan oksigen cukup memadai ke dalam mitokondria otot maka harus didukung dengan jumlah Hb yang cukup dan perfusi otot yang harus baik.
Oksigen yang masuk ke dalam otot berada dalam jumlah yang besar. Namun, tidak terbentuk gelembung udara dalam otot dan kelarutan oksigen dalam sitoplasma sel otot secara fisik juga akan rendah. Kenyataannya bahwa hal ini tidak terjadi karena dalam otot terdapat mioglobin yang afinitasnya terhadap oksigen jauh lebih besar daripada afinitas Hb terhadap oksigen. •
Mioglobin: suatu rantai polipeptida tunggal yang mengandung gugus prostetik heme yaitu senyawa tetrapirol siklik. Protein heme berfungsi dalam pengikatan oksigen, pengangkutan oksigen, dan fotosintesis. Mioglobin jaringan otot merah menyimpan oksigen, yang dalam keadaan kekurangan oksigen akan dilepas sehingga bisa digunakan oleh mitokondria otot untuk sintesis ATP yang bergantung oksigen. Semakin merah otot maka akan semakin tinggi kandungan mioglobin bahkan hingga berwarna merah kehitaman. Afinitas terhadap oksigen dinyatakan dengan P 50 yang menyatakan afinitas relatif berbagai hemoglobin terhadap oksigen. P50 adalah tekanan parsial oksigen yang menjadikan hemoglobin separuh-tersaturasi.
Sama halnya dengan hemoglobin, mioglobin juga dapat dihambat ikatannya dengan oksigen melalui interaksi ikatan dari CN- dan CO. CO dapat membentuk ikatan dengan satu heme tunggal dengan kekuatan 25.000 kali lebih besar daripada kekuatan ikatan dengan oksigen. Hal ini dikarenakan arah pengikatan CO pada besi heme yang lebih disukai adalah tegak lurus terhadap cincin heme, bersama tiga buah atom (Fe, C, O). Oksidasi Fe 2+ Fe3+ juga menghambat fungsi ikat O2 mioglobin. Pengolahan cadangan glikogen ATP yang diperlukan sebagai sumber energi konstan untuk siklus kontraksi-relaksasi otot yang dapat dihasilkan (1) melalui glikolisis dengan menggunakan glukosa darah atau glikogen otot , (2) melalui fosforilasi oksidatif , (3) dari kreatin fosfat, dan (4) dari dua molekul ADP dalam sebuah reaksi yang dikatalisis oleh enzim adenilil siklase. Sarkoplasma 26
27
otot skeletal mengandung simpanan glikogen yang besar dan terletak dalam granul di dekat pita I. Pelepasan glukosa dari glikogen bergantung pada enzim glikogen fosforilase otot yang spesifik, yang dapat diaktifkan oleh ion Ca2+, epinefrin, serta AMP. Untuk menghasilkan glukosa-6-fosfat (G-6-P) bagi keperluan glikolisis dalam otot skeletal, enzim glikogen fosforilase b harus diaktifkan dahulu menjadi fosforilase a lewat reaksi forforilasi oleh enzim fosforilase b kinase. Ion Ca2+ akan meningkatkan aktivasi enzim fosforilase b kinase yang juga melalui reaksi fosforilasi. Jadi, ion Ca2+ akan meningkatkan kontraksi otot maupun mengaktifkan sebuah lintasan untuk menghasilkan energi yang dibutuhkan.
Kendali Humoral Sistem Muskuloskeletal Hormon yang mengatur adalah yang terkait dengan pengaturan ionisasi kalsium dalam serum dan keseimbangan kalsium serum-tulang yaitu hormon paratiroid dan kalsitonin. Sebelumnya juga sudah dijelaskan tapi mungkin bisa dibaca lebih dalam lagi masing-masing di text book sudah banyak dijelaskan. Plasma memiliki tiga fraksi yaitu: 1. Terikat albumin 2. Tidak terionisasi (dicekal asam dikarboksilat atau trikarboksilat, sitrat) 3. Ca2+ Fraksi 1 merupakan fraksi yang tidak dapat berdifusi (nondifussible), sedangkan fraksi 2 dan 3 adalah fraksi yang dapat berdifusi (difussible) dan diperankan sebagian besar oleh ion Ca2+. Ada keseimbangan antara Ca nondifussible dengan Ca2+ yang diatur oleh pH. Secara keseluruhan, terjadi keseimbangan sebagai berikut. Ca tulang ↔ Ca-proteinat ↔ Ca2+ Ca tulang ↔ Ca-proteinat dipengaruhi oleh hormon paratiroid dan kalsitonin. Paratiroid memengaruhi sel osteoklas dan kalsitonin memengaruhi sel osteoblas. Ca-proteinat ↔ Ca 2+ turut dipengaruhi oleh pH. Gangguan kedua faktor (hormon dan pH) akan menyebabkan
27
28
gangguan ionisasi sehingga terganggunya konduktibilitas saraf dan mengakibatkan kejang tetani. Jika terjadi penurunan fungsi maka akan berakibat pada osteoporosis dan fraktur. Hormon kalsitriol juga sudah dibahas sebelumnya. Kortisol berperan dalam proteolisis matriks tulang (protein) dan protein otot. Dan sebaliknya, testosteron merangsang terjadinya sintesis protein otot. Adrenalin menyebabkan peningkatan terjadinya pemecahan glikogen otot. Dan seluruh interaksi ini juga dibantu oleh neuromediator.
28
29
KESIMPULAN
Kesimpulan yang dapat diambil dari hasil diskusi tutorial kami adalah kram dapat terjadi secara tiba-tiba, faktor yang mempengaruhi kram antara lain kelelahan, kurangnya pemanasan sebelum olahraga, terlalu lama sikap tubuh atau badan secara monoton. Dari segi anatomi , otot yang berpengaruh saat kram sangat banyak dapat di bagian g lutel (bagian pantat), otot pada tungkai atas, otot pada tungkai bawah, dan otot pada telapak kaki. Dari segi histologi kram dapat terjadi pada otot polos atau otot lurik yang menyerang jaringan ikat pada otot. Tidak hanya itu, sari segi fisiologi dapat diketahui mekanisme umum kontraksi otot dan relaksasi otot.
dan bokimia kram pada fase relaksasi kontraksi otot. Kepala miosin
menghidrolisis ATP menjadi ADP. Kram dapat dicegah dengan bermacam cara yaitu memperbanyak minum air putih, melakukan pemanasan sebelum berolahraga dan kurangi aktivitas yang terlalu berat. Kram dapat di tangani dengan kompresan air hangat serta otot yang terkena kram direngangkan.
29