Power flow calculations Dirk Van Hertem Hakan Ergun Priyanko Guha Thakurta Research group Electa Department of electrical engineering (ESAT) K.U.Leuven, Belgium
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
1 / 33
Introduction
Outline 1
Introduction Example
2
System representation
3
The load flow problem
4
Solving the problem Gauss-Seidel Newton-Raphson power flow Simplified Newton-Raphson
5
Software
6
State estimation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
2 / 33
Introduction
Introduction: load or power flow What are “power flow calculations” Calculating the power flow (active and reactive) through all the lines in the power system Calculating the voltages (amplitudes and angles) at every node (substation) Determination of the static state of a given system Knowing only: Grid configuration and parameters (R and X ) Power outputs of generator units Loads (active and reactive) Some voltages
“Load flow” and “power flow” are synonyms
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
3 / 33
Introduction
Introduction: load or power flow
Why is load flow important? Assessing if the power system is: Within operational limits Safe (N-1)
Basis for other (e.g. dynamic) calculations Checking whether future situations are valid
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
3 / 33
Introduction
Introduction: load or power flow
When is it used? System planning System operations State estimation Dynamic simulations (basis, first calculation) ...
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
3 / 33
Introduction
Introduction: load or power flow 2˚30’ E . Greenwich
2˚40’
2˚50’
3˚00’
3˚20’
3˚10’
3˚30’
3˚40’
4˚00’
3˚50’
4˚10’
4˚30’
4˚20’
4˚40’
5˚20’
5˚10’
5˚00’
4˚50’
5˚30’
5˚50’
5˚40’
6˚20’
6˚10’
6˚00’
6˚30’
6˚40’
6˚50’
7˚00’ CBR
GEERTRUIDENBERG
51˚30’
51˚30’
BERNEAU
LIXHE
13
Meuse
Visé (SNCB)
BORSSELE KREEKRAK
Fooz 0)
Den aut
Esc
+70
MARCHE-LEZECAUSSINNES
50˚30’
70 150+
50) 70(1
70(15
Ciply
AUVELAIS
Namur
FLEURUS
as Ma 0)
Turon
Spa
LA PRAYE FOUR
Heid-deGoreux
Comblain
Bévercé
150 kV 70 kV
circuits multiples
2
meervoudige stroomketen
2
Butgenbach Am
Bronrome blèv
COO-TROIS-PONTS
Stéphanshof
BRUME Bomal
Florée
CENTRALES
CENTRALES
e
Wierde Sart-Bernard (SNCB)
Bois-deVillers
2de draadstel in aanbouw of in ontwerp
ONDERGRONDSE KABELS
70 kV
Warch e
Grands-Malades
FARCIENNES
existante
c. thermique
bestaande
en projet ferme
Trois-Ponts
70 (220)
Miécret
c. nucléaire
Amel
thermische c.
vast ontworpen bestaande
existante
kernenergie c.
d'Heure
MASTAING
380+15
Dorinne
150+3 6
Solre St-Géry
Hogne (SNCB)Marche-enFamenne
Dinant
bestaande in ontwerp
50˚10’
MONT-LEZ-HOUFFALIZE
36 (150)
Les
se
DAMPLEIN Belliard. Hovenier.
CHOOZ
2
Pondrôme
WOMMELGEM
Tabak.
2
VIREUX
ZURENBORG
3
Couvin
OELEGEM
Berchem(NMBS)
2
15(70)
Baileux
LesForges
50˚00’
Momignies FOURMIES
MORTSEL
Wilrijk
Herbaimont Meuse
Moons. ANTWERPEN ZUID
MHo
380+ 220(2 x380 )
Oever BURCHT
380+220
BEVEREN
St-Niklaas
Forrières (SNCB)
2
ST-PAUWELS 50˚00’
STATIONS existants en projet
MERKSEM ZWIJNDRECHT
Hatrival(SNCB)
Our
VILLEROUX Hoboken
MERCATOR
150+70
pomp-c.
vast ontworpen
Charneux
On
Romedenne
NEUVILLE SCHELDELAAN
BPCHM
existante
Hastière
PLATE-TAILLE KALLO
hydraulische c.
bestaande
POSTES
Cierreux
MARCOURT
220+150(220)
Renlies
9
HEIMOLEN
he
vast ontworpen
en projet ferme
St-Vith 380+220
Ourt
ACHENE
JAMIOLLE
0) 15(7
FINA
Soy
Ciney
Sommière
Clermont
12(70)
Beaumont
c. de pompage
(2x380
Hanzinelle 12(7 0)
EKEREN
bestaande
en projet ferme
Yvoir (SNCB)
SNCB
Eau
50˚20’
7eHAVENDOK
50˚10’
Warnant
Thy-le-Château
LILLO BAYER
KETENISSE
Gerpinnes
)
20) 150(2
150+36
THUILLIES
OORDEREN
existante
c. hydraulique
Lobbes
1:500000
SOLVAY
vast ontworpen
en projet ferme
SNCB BERENDRECHTSLUIS.
DOEL
50˚20’
0
MONCEAUMONTIGNIES
70 kV
in aanbouw of in ontwerp
CABLES SOUTERRAINS 150 kV
JEMEPPESOLVAY
TERGNEE
DAMPREMY
BINCHE
220 kV
70 kV
2
Sambre
380+150
AMERCŒUR
PERONNES
HARMIGNIES
GRAMME
SNCB
GOSSELIES
150 kV
150 kV
HteSARTE
Andenne
Marche-les-D.
St-Servais
GOUY
BASCOUP TRIVIERES
70
220 kV
en construction ou en projet 2e terne en construction ou en projet
SEILLES
Pâturages
BASF
Statte (SNCB)
COGNELEE
70(150)
0)
Elouges
2
+
380 kV
380 kV
Gileppe Gile ppe
ST-AMAND
LACROYERE V/HAINE
+ 70 150
20
150
QUAREGNON
Nominale spanning
Tension nominale Eupen
Stembert dre Ves
50˚30’
380+2
BAUDOUR 70(1 50)
+ 70
150
Harchies
BOVENGRONDSE LIJNEN
LIGNES AERIENNES
Garnstock
150+70
Les Plenesses PT-RECHAIN
50 220+1
RIMIERE
CHAMPION
GHLINOBOURG
TERTRE
CHEVALET
Battice
Soiron Pepinster
TIHANGE
Waret
COURCELLES
AIRLIQ.
HenriChapelle
Welkenraedt (SNCB)
150
Monsin
ROMSEE
LATROQUE LEVAL
CLERMONT
Leuze
Gembloux 12
Quevaucamps
ZANDVLIET
CroixChabot
2
PETROCHIM FELUY
Meuse
SERAING Ivoz AWIRS
70) 12(
Soignies Lens
4
15(70)
Aische-en-Refail
NIVELLES
AVELIN
3 BRESSOUX JUPILLE
Glatigny CORBAIS
LECHENOI
Dyle
Sauvenière
ANTOING
220+
150+36
e De ndr
CHERTAL
2
2
VIEUX GENAPPE
SNCB Baulers
SNCB
CHIEVRES
Fooz
50˚40’
50˚40’
0
Ronquières Braine-le-C.
GAURAIN Carr. Milieu
1
Court-St-Et.
BAISY-THY Ath (SNCB)
WATTINES SNCB
Saives
Hannut
OISQUERCQ Meslin
LIGNE
Tournai
0 +15 380
0)
150+7
+70
Montzen (SNCB)
BERNEAU
Ottignies(SNCB)
Ceroux THIEULAIN 70 (150) 70(150) 150
LIXHE
AVERNAS Jodoigne
WATERLOO
BRAINE-L'ALLEUD
+ 70
Sche
der
2 NMBS Landen
RHODEST-G. ST-G.RODE
10(7
150
150
HERDEREN Borgloon Tongeren
BUIZINGEN
Blandain
Lanaken
BRUSTEM
St-Truiden
LABORELEC
MEKINGEN
Enghien (SNCB) Hoves
MARQUAIN
70(15
70(150)
lde
TIENEN
Herfelingen
Deux-Acren +70 150
150
380+150
51˚20’ 51˚10’ 50˚50’
WOLUWE-ST-L. ST-L.WOLUWE
IXELLES ELSENE
FOREST VORST
19 Geraardsbergen Ronse
DOTTIGNIES
WARANDE
KNP
50˚50’
DROGENBOS
RUIEN
AVELGEM
DHANIS
Q.DEMETSk. ZUID/MIDI
EIZERINGEN Appelterre
MOEN
MOUSCRON
Rivage (SNCB)
ZUTENDAAL
70(150)
Bilzen
150
2
NINOVE
OUDENAARDE
70(150)
+70
1:500000
Poulseur
Anthisnes
2 15
150(380)
16
Abée-Scry
Maasmechelen
2
GODSHEIDE
(NMBS)
MARCHIN
STALEN GENKLANGERLO SIKEL
Hasselt
Alken
Heverlee
ZWEVEGEM
150
Halen
Kersbeek
Pellenberg
380+
150+70
HEULE Kortrijk -NMBS WEVELGEM
ZONHOVEN
Paalsteenstr. 70
150+70
PEKKE
MENEN WEST
Lummen
DIEST
Dorenberg
Kessel-lo
2 Leuven (NMBS)
e Dyl
DILBEEKHELIPORTWIERTZ
Bas Warneton
Ourthe
HteSARTE
EISDEN Demer
Aarschot
WIJGMAAL
50) 70(1
Gasthuisberg
Esneux
RIMIERE
GRAMME Bekaert
WILSELE
ZAVENTEM HARENHEIDE
Vesdre
70(150)
TIHANGE
HOUTHALEN
HOENDERVELD
3
MACHELEN MOLENBEEK
BRUEGEL
Sart-Tilman
Ehein Hermalle s/Huy
AmpsinNeuville
OBERZIER
Opglabbeek
11
WESPELAAR
2
GRIMBERGEN
RELEGEM
Essene Denderleeuw (NMBS)
ST-Denijs Boekel
Magotteaux
Maaseik
BERINGEN
2
TESSENDERLO
KOBBEGEM Welle Zottegem
WORTEGEM
14
CLERMONT
HERCULES Dowchemical TIP
Muizen
VERBRANDEBRUG
Gavere
DESSELGEM
ROMSEE
Chénée
Ramet Croix-Chabot 70(1 50)
ESSOCHEM
Nete
Grote
KRUISBAAN
NMBS
TERLINDEN
AALST 150+70
ST-BAAFS-VIJVE Oostrozebeke
HARELBEKE KUURNE Bekaert 2 K.Oost
70+150
BELLAIRE 16
Grivegnée
AWIRS
MAASBRACHT
Gerdingen
Hechtel
MEERHOUT AMOCO
Langveld
PUTTE MECHELEN
70(150)
MERCHTEM
AALST NOORD Amylum
MUIZELAAR
IZEGEM
Angleur
Ougr.Sclessin
51˚00’
70 150+
FLORA
DEINZE
150+70
RUMBEKE
IEPER
16
150 +70
JUPILLE
70(1 50)
LATROQUE
LEVAL Flémalle
REPPEL HEZE Geel/Oevel
HEIST/BERG SIDAL Duffel
1
LEEST Tisselt
Leie
TIELT
150+70
Westrozebeke
IEPERNOORD
VIEILLE MONTAGNE
Herenthout LIER
LINT 7 el
MALDEREN
PITTEM 150+70
BEVEREN
STADEN Noordschote
BALEN HerentalsOlen
Nijlen
MORTSEL
Rup
Willebroek
BUGGENHOUT ST-GILLISDENDERMONDE
SERAING 17
Profondval IvozRamet
(I.E.)
380 + 150
ANTWERPEN ZUID
SCHELLE -DORP
Bornem
ZELE
Baasrode
IJzer
70(150)
MOL
MASSENHOVEN
WOMMELGEM
BURCHT
Temse Hamme
Lokeren
NIEUWEVAART HAM
Jemeppe
St-Huibr.-Lille
OVERPELT
POEDERLEE 2
MERCATOR
WALGOED
HEIMOLEN
KENNEDYLAAN RINGVAART
9
Pouplin
Montegnée
MHO
LOMMEL
OELEGEM
51˚10’
LANGERBRUGGESADA.
ZOMERGEM
DRONGEN
CHERATTE 16
FN 4
BRESSOUX Glain
8 Tilleur 70(220)
MERKSEM
2
St-Niklaas
AALTER
3
Vottem
Ans
St-JOB
DODEWAARD
SCHELDELAAN
ZURENBORG
SIDMAR
RODENHUIZE ZEDELGEM
51˚00’
7eHAVENDOK
FINA
DAMPLEIN
ST-PAUWELS EEKLO 6
70(15
Monsin
Voroux (SNCB) Hollogne
BAYER
ZWIJNDRECHT
BEERST
Saives Turnhout
EKEREN
+36
KOKSIJDE
BEERSE
MALLE
LILLO 150
KALLO
EEKLO NOORD
51˚20’
Alleur Rijkevorsel
BERENDRECHTSLUIS.
SOLVAY
KETENISSE
BEVEREN MALDEGEM
70(150)
EINDHOVEN
Herstal
BASF
HERDERSBRUG
BRUGGE
150+70
380+ 150
Ravels
ZANDVLIET
DOEL
OOSTBURG
3 BLAUWE TOREN
SLIJKENS
CHERTAL
FN
Kalmthout
NIEDERSTEDEM
VIANDEN S.E.O.BAULER
WALGOED
Aartselaar
Kontich
SCHELLE
MAZURES
LINT 7
Recogne
REVIN
LIER -SCH.DORP
Temse
FLEBOUR
Monceau-en-Ard. S˚re
Respelt
WAARLOOS
PETROCHIM
Orgeo
Sombreffe
50) 70(1
FELUY
LUMES
Gembloux
2
Vierre
Chassart
12
NeufchâteauLonglier(SNCB)
49˚50’
BUISSERET
MARCHE-LEZ-ECAUSSINNES
70(220)
Fays-les-Veneurs ois Sem
49˚50’
LONNY
VESLE Marbais (SNCB)
Seneffe
ROOST
Liberchies
TRIER Marbehan (SNCB)
Vierre
COURCELLES
ST-AMAND
Maisières LACROYERE
70 150+
GOSSELIES Arlon 70(1
Heppignies (30) sud
50)
TRIVIERES
70 + 30(150 )
AUVELAIS
Jumet
70(150)
380+150
70( 150 )
BERTRANGE Samb
re
AUBANGE
LATOUR
LAPRAYE FOUR
1:1000000
Echelle
CAB
Schaal
St-MARD
PONT-de-LOUP LAPRAYE
4
0
10
20
MONTST.MARTIN
30km
HERSERANGE
MOULAINE
PosteEst MONTIGNIES
Fosses-la-Ville
MONCEAU
1:500000
Differd. Arbed OXYLUX Belv.Arbed
BELVAL ESCH-SUR-ALZETTE SCHIFFLANGE
Situation au stand op
Schif.
VIGY Institut Géographique National Nationaal Geografisch Instituut
LANDRES 2˚40’ E . Greenwich
1-1-2005 49˚30’
150 +70
) 70(150
Marchienne 150+70
49˚30’
CSTMM F.DEFER 2 BLANCHISSERIE Charleroi
50) 70(1
MALFALISE
JEMEPPESOLVAY
TERGNEE FARCIENNES
Gilly
Fontaine l'Evêque BINCHE
+70
Moustier
70(150)
AMERCŒUR
DAMPREMY CARAL FOC
Distrigaz
HARMIGNIES
HEISDORF
150
FLEURUS
PERONNES
30(150)
70(150)
Ciply
Pâturages
HEINSCH SNCB
GOUY BASCOUP
elle
BOELTCC BOELHF LaLouvière
Piéton (SNCB) 150+70
Boussu
Elouges
Bonnert
Villers-s/Semois
Chiny
Keumiée
BOEL FOUR
BOEL LL 150+ 70
50) 70(1
+ 70
VILLE/HAINE Mons
JEMAPPES
Mos
150 + 70
OBOURG
50)
150+70
150+70
70(1
49˚40’
70(150)
GHLIN
QUAREGNON
16
49˚40’
AIR LIQUIDE
Alze tte
150
150+30 30(150)
TERTRE
BAUDOUR
2˚50’
3˚00’
3˚10’
3˚20’
3˚30’
3˚40’
DVH, HE, PGT (KUL/ESAT/ELECTA)
3˚50’
4˚00’
4˚10’
4˚20’
4˚30’
4˚40’
4˚50’
5˚00’
5˚10’
5˚20’
5˚30’
Power flow calculations
5˚40’
5˚50’
6˚00’
6˚10’
6˚20’
6˚30’
6˚40’
6˚50’
September 19, 2011
3 / 33
Introduction
Example
Example File: case6 wh.m, from the book “computational methods for electric power systems”, M. Crow. Bus data bus 1 2 3 4 5 6
type 3 2 2 1 1 1
Pd 25 15 27.5 0 15 25
Qd 10 5 11 0 9 15
Vm 1.05 1.05 1 1 1 1
Va 0 0 0 0 0 0
Vmax 1.05 1.05 1.05 1.05 1.05 1.05
Generator data Gen Pg Pq 1 0 0 2 50 0
Vmin 1.05 1.05 0.95 0.95 0.95 0.95
Pmax 200 150
G 1
4
#1
#6
3
Branch data
#2
#3
#5 #7 6
#4 5
line 1 2 3 4 5 6 7
from 1 1 2 2 4 3 5
to 4 6 3 5 6 4 6
R 0.020 0.031 0.006 0.071 0.024 0.075 0.025
X 0.185 0.259 0.025 0.320 0.204 0.067 0.150
B 0.009 0.010 0.000 0.015 0.010 0.000 0.017
2 G
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
4 / 33
Introduction
Example
Example File: case6 wh.m, from the book “computational methods for electric power systems”, M. Crow. Bus data bus 1 2 3 4 5 6
type 3 2 2 1 1 1
Pd 25 15 27.5 0 15 25
Qd 10 5 11 0 9 15
Vm 1.05 1.05 1 1 1 1
Va 0 0 0 0 0 0
Vmax 1.05 1.05 1.05 1.05 1.05 1.05
Generator data Gen Pg Pq 1 0 0 2 50 0
Vmin 1.05 1.05 0.95 0.95 0.95 0.95
Pmax 200 150
G 1
4
#1
#6
3
Branch data
#2
#3
#5 #7 6
#4 5
line 1 2 3 4 5 6 7
from 1 1 2 2 4 3 5
to 4 6 3 5 6 4 6
R 0.020 0.031 0.006 0.071 0.024 0.075 0.025
X 0.185 0.259 0.025 0.320 0.204 0.067 0.150
B 0.009 0.010 0.000 0.015 0.010 0.000 0.017
2 G
How would you solve this simple example by hand?
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
4 / 33
System representation
Outline 1
Introduction Example
2
System representation
3
The load flow problem
4
Solving the problem Gauss-Seidel Newton-Raphson power flow Simplified Newton-Raphson
5
Software
6
State estimation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
5 / 33
System representation
System representation
Most power systems are three phase AC Normal power flow uses one phase equivalents ⇒ We only focus on this one today One phase power flow only valid for balanced systems Systems are usually given in per unit values Lines can be represented by a π-equivalent
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
6 / 33
System representation
Per-unit calculations Normalized representation of the four basic properties: voltage, current, impedance and complex power Of these, two can be chosen independently Normally rated phase voltage and one phase rated power are taken as basis Upu =
Ibase = Zbase =
U Ubase
and Spu =
S Sbase
Sbase Ubase Ubase Ibase
or Zbase =
2 Ubase Sbase
Logical values: for a 11.8 kV , 60 MVA machine, √ kV and Sbasis = 60 MVA Ubasis = 11.8 3 3 √ For a 400 kV line, with 100 MVA: Ubase = 400/ 3, 2 3 √ Sbase = 100/3 ⇒ Rbase = 400 · 100 = 1600Ω 3
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
7 / 33
System representation
Per-unit calculations Normalized representation of the four basic properties: voltage, current, impedance and complex power Of these, two can be chosen independently Normally rated phase voltage and one phase rated power are taken as basis Upu =
Ibase = Zbase =
U Ubase
and Spu =
S Sbase
Sbase Ubase Ubase Ibase
or Zbase =
2 Ubase Sbase
Logical values: for a 11.8 kV , 60 MVA machine, √ kV and Sbasis = 60 MVA Ubasis = 11.8 3 3 √ For a 400 kV line, with 100 MVA: Ubase = 400/ 3, 2 3 √ Sbase = 100/3 ⇒ Rbase = 400 · 100 = 1600Ω 3 Why are voltage and complex power chosen as fixed values?
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
7 / 33
System representation
Example per-unit
Generator example of before Ubasis =
11.8 √ 3
kV and Sbasis =
60 3
MVA
Sbase Ubase
=
√ 60· 3 11.8·3 = 2.9357 2
Basis for current: Ibase =
Basis for impedance: Zbase =
2 Ubase Sbase
=
11.8 √ 3 60 3
kA
= 2.3207 Ω
Line connecting load: 0, 5 + 1 Ω = 0.21546 + 0.43091 pu Afterwards, calculate using per-unit instead of original values
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
8 / 33
System representation
Per-unit and transformers Z1
1111 0000 0000 1111 0000 1111 0000 1111 0000 1111
U1
Z2
n1 : n2 11 00 00 11 11 00 11 00 00 11 00 11 00 11 00 11 11 00
11 00 00 11 11 00 11 00 00 11 00 11 00 11 00 11 11 00
1111 0000 0000 1111 0000 1111 0000 1111 0000 1111
U2
Voltage at both sides of the transformer is different → different basis One of the major advantages of per-unit calculations because of simplification
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
9 / 33
System representation
Per-unit and transformers Z1
1111 0000 0000 1111 0000 1111 0000 1111 0000 1111
Z20
1111 0000 0000 1111 0000 1111 0000 1111 0000 1111
n1 : n2
11 00 00 11 11 00 11 00 00 11 00 11 11 00 00 11 00 11
U1
11 00 00 11 11 00 11 00 00 11 00 11 11 00 00 11 00 11
U2
Voltage at both sides of the transformer is different → different basis One of the major advantages of per-unit calculations because of simplification 2 2 U n Z20 = Z2 · n12 = Z2 · U12 2
DVH, HE, PGT (KUL/ESAT/ELECTA)
2
Power flow calculations
September 19, 2011
9 / 33
System representation
Per-unit and transformers Zp
1111 0000 0000 1111 0000 1111 0000 1111 0000 1111
U1
n1 : n2 11 00 00 11 11 00 11 00 00 11 00 11 00 11 00 11 11 00
11 00 00 11 11 00 11 00 00 11 00 11 00 11 00 11 11 00
U2
Voltage at both sides of the transformer is different → different basis One of the major advantages of per-unit calculations because of simplification 2 2 n U Z20 = Z2 · n12 = Z2 · U12 2
Zp = Z1 + Z20
DVH, HE, PGT (KUL/ESAT/ELECTA)
2
Power flow calculations
September 19, 2011
9 / 33
System representation
Per-unit and transformers Zs
n1 : n2
U1
11 00 00 11 11 00 11 00 00 11 00 11 00 11 00 11 11 00
11 00 00 11 11 00 11 00 00 11 00 11 00 11 00 11 11 00
1111 0000 0000 1111 0000 1111 0000 1111 0000 1111
U2
Voltage at both sides of the transformer is different → different basis One of the major advantages of per-unit calculations because of simplification 2 2 n U Z20 = Z2 · n12 = Z2 · U12 2
Zp = Z1 +Z20
2
U2
Zs = Zp · U22 and Zs (pu) = ZbaseZs(sec) 1 The per-unit impedance is the same on both sides of the transformer ⇒ can be replaced by one series impedance! DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
9 / 33
System representation
Representation of a transmission line X
1111 0000 0000 1111 0000 1111 0000 1111 0000 1111 B 2
G 2
R
B 2
G 2
π-equivalent Valid for lines up to 240 km All values are normally small Other equivalents exist and are sometimes used in practice Normally, G can be neglected With overhead lines, B can be neglected as well, for cables this is not the case (see chapters on lines and cables)
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
10 / 33
The load flow problem
Outline 1
Introduction Example
2
System representation
3
The load flow problem
4
Solving the problem Gauss-Seidel Newton-Raphson power flow Simplified Newton-Raphson
5
Software
6
State estimation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
11 / 33
The load flow problem
A bit of algebra: incidence matrix Directed Graph
Incidence matrix (A0 ) line # 1
-1
nodes 1 0 0
# lines (branches) × # nodes
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
12 / 33
The load flow problem
A bit of algebra: incidence matrix Directed Graph
Incidence matrix (A0 ) line # 1 line # 2
-1 -1
nodes 1 0 0 0 1 0
# lines (branches) × # nodes
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
12 / 33
The load flow problem
A bit of algebra: incidence matrix Directed Graph
Incidence matrix (A0 ) line # 1 line # 2 line # 3
-1 -1 0
nodes 1 0 0 1 -1 1
0 0 0
# lines (branches) × # nodes
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
12 / 33
The load flow problem
A bit of algebra: incidence matrix Directed Graph
Incidence matrix (A0 ) line line line line
# # # #
1 2 3 4
-1 -1 0 0
nodes 1 0 0 1 -1 1 -1 0
0 0 0 1
# lines (branches) × # nodes
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
12 / 33
The load flow problem
A bit of algebra: incidence matrix Directed Graph
Incidence matrix (A0 ) line line line line line
# # # # #
1 2 3 4 5
-1 -1 0 0 0
nodes 1 0 0 1 -1 1 -1 0 0 -1
0 0 0 1 1
# lines (branches) × # nodes
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
12 / 33
The load flow problem
A bit of algebra: incidence matrix Directed Graph
Incidence matrix (A0 ) line line line line line
# # # # #
1 2 3 4 5
-1 -1 0 0 0
nodes 1 0 0 1 -1 1 -1 0 0 -1
0 0 0 1 1
# lines (branches) × # nodes the columns are dependent
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
12 / 33
The load flow problem
Incidence matrix Incidence matrix is written as A0
Some symbols Meaning of the incidence matrix Describes the directed graph
Iij : Current from node i to node j
Produces differences −1 −1 0 −1 0
1 0 −1 0 −1
0 0 U2 − U1 U1 1 0 U2 U3 − U1 = U3 − U2 (1) 1 0 · U3 U4 − U1 0 1 U4 0 1 U4 − U2
DVH, HE, PGT (KUL/ESAT/ELECTA)
Ii : Current injected at node i
Power flow calculations
Ui : Potential of node i Eij : Potential difference (voltage) between nodes i and j Cij : Conductance of the line between nodes i and j
September 19, 2011
13 / 33
The load flow problem
Incidence matrix Incidence matrix is written as A0
Meaning of the incidence matrix
Ii : Current injected at node i
Describes the directed graph Produces differences −1 −1 0 −1 0
1 0 −1 0 −1
0 0 U2 − U1 U1 1 0 U2 U3 − U1 = U3 − U2 (1) 1 0 · U3 U4 − U1 0 1 U4 0 1 U4 − U2
Setting U4 = 0 Resulting matrix is the incidence matrix: A
DVH, HE, PGT (KUL/ESAT/ELECTA)
Some symbols
Power flow calculations
Iij : Current from node i to node j Ui : Potential of node i Eij : Potential difference (voltage) between nodes i and j Cij : Conductance of the line between nodes i and j
September 19, 2011
13 / 33
The load flow problem
Incidence matrix Incidence matrix is written as A0
Meaning of the incidence matrix
Ii : Current injected at node i
Describes the directed graph Produces differences −1 −1 0 −1 0
1 0 U2 − U1 U1 0 1 U2 U3 − U1 = U3 − U2 (1) −1 1 · U3 − U1 0 0 −1 0 − U2
Setting U4 = 0 Resulting matrix is the incidence matrix: A
DVH, HE, PGT (KUL/ESAT/ELECTA)
Some symbols
Power flow calculations
Iij : Current from node i to node j Ui : Potential of node i Eij : Potential difference (voltage) between nodes i and j Cij : Conductance of the line between nodes i and j
September 19, 2011
13 / 33
The load flow problem
Meaning of the incidence matrix 1
2
3
4
5
Incidence matrix is A0 with one node removed (grounded, reference) Ii is a nodal current injection, Iij is a branch flow T −1 1 0 I12 −1 0 I1 1 I13 I2 = 0 −1 1 · I23 0 −1 0 I24 I3 0 0 −1 I34 Ui is a nodal voltage/potential, Eij represents a potential drop over line ij The relation between the voltage difference (e) and line flows (f): Ohms law (take Cij the conductance of i to j) Link on youtube
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
14 / 33
The load flow problem
Meaning of the incidence matrix 1
2 3
4
5
Incidence matrix is A0 with one node removed (grounded, reference) Ii is a nodal current injection, Iij is a branch flow Ui is a nodal voltage/potential, Eij represents a potential over line ij drop E12 −1 1 0 E13 −1 0 1 U1 E23 = 0 −1 1 · U2 E24 0 −1 0 U3 E34 0 0 −1 The relation between the voltage difference (e) and line flows (f): Ohms law (take Cij the conductance of i to j) Link on youtube
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
14 / 33
The load flow problem
Meaning of the incidence matrix 1
2 3
4
5
Incidence matrix is A0 with one node removed (grounded, reference) Ii is a nodal current injection, Iij is a branch flow Ui is a nodal voltage/potential, Eij represents a potential drop over line ij The relation between the voltage difference (e) and line flows (f): Ohms law (take Cij the conductance of i to j) I12 C12 0 0 0 0 E12 I13 0 C13 E13 0 0 0 I23 = 0 0 C23 0 0 · E23 I24 0 E24 0 0 C24 0 I34 0 0 0 0 C34 E34 Link on youtube
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
14 / 33
The load flow problem
Putting it together AT · C · A · U = I Ybus · U = I Ybus is the bus admittance matrix Representation of the entire network by an admittance matrix, a vector of nodal voltages and a vector of nodal current injections Yij = −yij (admittance between node i and j) Pn Yii = j yij (sum of the rest of the row + yii , the impedance to the reference)
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
15 / 33
The load flow problem
The power system represented
The power system consists of: Generators: delivering P and Q Loads: consuming P and Q Lines or branches: connecting generation and load Nodes or busbars: connections points in the power system
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
16 / 33
The load flow problem
The power system represented
The power system consists of: Generators: delivering P and Q Loads: consuming P and Q Lines or branches: connecting generation and load Wanted: Power flow of P and Q through these lines
Nodes or busbars: connections points in the power system Wanted: Voltage amplitude (U) and voltage angle (θ) at each node
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
16 / 33
The load flow problem
Mathematical statement of the problem Ia a
Iab
Iac c
yac
Ic
yab ybc
b
Ibc
Ib
Uc ∠θc
Ub ∠θb
Ua ∠θa
Neutral
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
17 / 33
The load flow problem
Mathematical statement of the problem
Ia
Iac c
yac
Ic
Voltage of node i to neutral is Ui ∠θi
Iab
Admittance between i and j is yij
yab ybc
Ibc
a
Current from i to j is Iij The injected current at i is Ii
b
Ib
Uc ∠θc
Ub ∠θb Neutral
DVH, HE, PGT (KUL/ESAT/ELECTA)
Ua ∠θa
Ia = Iab + Iac Ia = (Ua − Ub ) · yab + (Ua − Uc ) · yac Ia = Ua · (yab + yac ) − Ub · yab − Uc · yac
Power flow calculations
September 19, 2011
17 / 33
The load flow problem
Mathematical statement of the problem Last equation repeated: Ia = Ua · (yab + yac ) − Ub · yab − Uc · yac Pn We take Yaa = yab + yac = yaa + i6=a yai yaa = ya0 = the parallel branches to node a (in this example, yaa = 0) We take Yai = −yai ⇒ as with Ybus , the bus admittance matrix Which results in: Ia = Yaa · Ua + Yab · Ub + Yac · Uc
(2)
Or for the entire system: Ia Yaa Yab Yac Ua Ib = Yba Ybb Ybc · Ub Ic Yca Ycb Ycc Uc or and
(3)
I = Ybus · U
(4)
Yij = Yji in symmetrical systems (e.g. not with phase shifting transformers)
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
17 / 33
The load flow problem
Mathematical statement of the problem Resulting equations for a general system with n nodes Ii =
n X
Yij · Uj
∀i ∈ N ≤ n
(5)
j=1
Si∗ = Ui∗ · Ii
(6)
Above equations form the basis of power flow There are 4 basic quantities for each node in power flow calculations: Voltage amplitude |U| Voltage angle θ between the voltage vector and the voltage reference Active power injection, withdrawal at a node Reactive power injection, withdrawal at a node
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
17 / 33
The load flow problem
Mathematical statement of the problem Where do shunt elements fit?
Ia Yaa Ib = Yba Ic Yca n X Yii = yij
=
j=1 n X
Yab Ybb Ycb
Yac Ua Ybc · Ub Ycc Uc
−Yij + yii
(7)
(8)
(9)
j=1 j6=i
yii is the term to the node that has been “grounded” In practice: shunt elements
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
17 / 33
The load flow problem
Types of nodes Three distinct types of nodes (important) PV bus: A generating source is connected to the bus; the nodal voltage is controlled at a certain magnitude U by injecting or absorbing reactive energy. The generated power PG is set at a specified value. θ and QG are computed. Constant voltage operation is only possible when the generator is within its reactive energy generation limits. PQ bus: P and Q are the control variables. This is the case when there is only a load connected to the bus or the generator is outside its reactive power limits. Slack (swing) bus: one of the generator busses is chosen to be the slack bus where the nodal voltage magnitude, Uslack , and phase angle θslack are specified. This bus is needed to provide a “compensation” for the electrical losses that are not known in advance. The bus forms a reference for the voltage angle.
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
18 / 33
The load flow problem
Types of nodes Three distinct types of nodes (important) PV bus: A generating source is connected to the bus; the nodal voltage is controlled at a certain magnitude U by injecting or absorbing reactive energy. The generated power PG is set at a specified value. θ and QG are computed. Constant voltage operation is only possible when the generator is within its reactive energy generation limits. PQ bus: P and Q are the control variables. This is the case when there is only a load connected to the bus or the generator is outside its reactive power limits. Slack (swing) bus: one of the generator busses is chosen to be the slack bus where the nodal voltage magnitude, Uslack , and phase angle θslack are specified. This bus is needed to provide a “compensation” for the electrical losses that are not known in advance. The bus forms a reference for the voltage angle.
What is the mathematical meaning of the slack bus? DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
18 / 33
The load flow problem
Types of nodes Three distinct types of nodes (important) PV bus: A generating source is connected to the bus; the nodal voltage is controlled at a certain magnitude U by injecting or absorbing reactive energy. The generated power PG is set at a specified value. θ and QG are computed. Constant voltage operation is only possible when the generator is within its reactive energy generation limits. PQ bus: P and Q are the control variables. This is the case when there is only a load connected to the bus or the generator is outside its reactive power limits. Slack (swing) bus: one of the generator busses is chosen to be the slack bus where the nodal voltage magnitude, Uslack , and phase angle θslack are specified. This bus is needed to provide a “compensation” for the electrical losses that are not known in advance. The bus forms a reference for the voltage angle.
Ii =
Pn
j=1
Yij · Uj
DVH, HE, PGT (KUL/ESAT/ELECTA)
∀i ∈ N ≤ n and i 6= nslack Power flow calculations
September 19, 2011
18 / 33
Solving the problem
Outline 1
Introduction Example
2
System representation
3
The load flow problem
4
Solving the problem Gauss-Seidel Newton-Raphson power flow Simplified Newton-Raphson
5
Software
6
State estimation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
19 / 33
Solving the problem
The problem Known data: Active power injections in my system at generator nodes Voltages at generator nodes Active and reactive withdrawals (load) at PQ nodes Slack node voltage and angle Impedances (Ybus )
Unknowns: Rest of P (slack), Q (slack and PV), voltage amplitude (PQ nodes) and voltage angle (all but slack)
Equations I =Y ·U
(10)
S∗ = U∗ · I
(11)
S∗ = U∗ · Y · U
(12)
∗
(13)
P − Q = U · Y · U n X Pi − Qi = Ui∗ · Yij · Uj
(14)
j=1 DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
20 / 33
Solving the problem
Gauss-Seidel
Gauss-Seidel Algorithm Ii =
Pn
j=1
Yij · Uj and Si∗ = Ui∗ · Ii give: n 1 Si∗ X Ui = Yij · Uj · − ∗ Yii U j=1 i
(15)
j6=i
This is solved bus by bus, and solutions of previous calculations are filled in directly i n X X 1 Si∗ (i+1) (i+1) (i) Ui = · − Y · U − Y · U (16) ij ij j j ∗(i) Yii U j=1 j=i+1 i j6=i
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
j6=i
September 19, 2011
21 / 33
Solving the problem
Gauss-Seidel
Gauss-Seidel 1
2
For busbar 21 , calculate I2 = Pn Calculate j=1 Y2j · Uj
S2∗ U2∗
j6=2 3
Subtract solution 2 from solution 1 and divide the result by Y22 to obtain a new value for U2
4
For busbar 3, calculate I3 =
5
Using the new value of U2 of step 3, calculate
6
Subtract solution 5 from solution 4 and divide the result by Y33 to obtain a new value for U3
7
Repeat for all busses
8
Compare latest set of voltages with previous and check tolerance: U(i+1) − U(i) < ε? If not, go to step 1.
1 when
S3∗ U3∗
Pn
j=1 j6=3
Y3j · Uj
1 is the reference bus
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
21 / 33
Solving the problem
Gauss-Seidel
Gauss-Seidel
Convergence and acceleration The Gauss-Seidel method converges linearly (slow) with system size Each iteration itself requires limited processing power Often, the method is corrected with an acceleration factor (new ) (new ) (old) Ui(acc) = α · Ui − (α − 1) · Ui (new )
= α · Ui =
(old) Ui
(old)
− α · Ui
+α·
(new ) (Ui
−
(old)
(17)
+ Ui
(18)
(old) Ui )
(19)
1<α<2 For large systems, often a value of 1.6 is chosen
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
21 / 33
Solving the problem
Gauss-Seidel
Gauss-Seidel
Gauss-Seidel properties A starting vector must be chosen Often, the starting voltages are set to 1∠0 pu called “Flat start”
If the voltages are calculated in block (and not replaced after one has calculated the former one), we call the method the Jacobi method. The Jacobi method has a slower convergence
The Gauss-Seidel method is not often used anymore
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
21 / 33
Solving the problem
Gauss-Seidel
Gauss-Seidel
Gauss-Seidel properties A starting vector must be chosen Often, the starting voltages are set to 1∠0 pu called “Flat start”
If the voltages are calculated in block (and not replaced after one has calculated the former one), we call the method the Jacobi method. The Jacobi method has a slower convergence
The Gauss-Seidel method is not often used anymore
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
21 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory
Solution of equation y = f (x) Taylor series expansion: df d2 f dx x=x(0) dx 2 x=x(0) y = f [x(0)]+ ·[x −x(0)]+ ·[x −x(0)]2 +. . . (20) 1! 2!
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory
Solution of equation y = f (x) Taylor series expansion: df d2 f dx x=x(0) dx 2 x=x(0) y = f [x(0)]+ ·[x −x(0)]+ ·[x −x(0)]2 +. . . (20) 1! 2!
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory
Solution of equation y = f (x) Taylor series expansion:
y = f [x(0)] +
df dx x=x(0) 1!
· [x − x(0)]
(20)
Solving this for x: x = x(0) +
DVH, HE, PGT (KUL/ESAT/ELECTA)
1 · [y − f (x(0))] df dx x=x(0)
Power flow calculations
(21)
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory
f (U, θ)
(U, θ)∗ (U, θ)0
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory
f (U, θ)0 f (U, θ)
(U, θ)∗ (U, θ)0
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory derivative f (U, θ)0 f (U, θ)
(U, θ)∗ (U, θ)0
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory derivative f (U, θ)0 f (U, θ)
(U, θ)1
(U, θ)∗ (U, θ)0
f (U, θ)1
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory derivative f (U, θ)0 f (U, θ)
f (U, θ)2 (U, θ)1
(U, θ)∗ (U, θ)2
(U, θ)0
f (U, θ)1
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory
Solution for multivariable nonlinear equations y1 = f1 (x1 , x2 , . . . , xn ) y2 = f2 (x1 , x2 , . . . , xn ) .. . y3 = fn (x1 , x2 , . . . , xn )
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory Solution for multivariable nonlinear equations
y1 y2 .. . yn
= +
DVH, HE, PGT (KUL/ESAT/ELECTA)
f1 (x1 (0), x2 (0), . . . , xn (0)) f2 (x1 (0), x2 (0), . . . , xn (0)) .. . fn (x1 (0), x2 (0), . . . , xn (0)) ∂f1 ∂f1 ∂f1 ··· ∂x1 ∂x2 ∂xn x1 − x1 (0) ∂f2 ∂f2 ∂f2 x − x (0) ··· 2 2 ∂x1 ∂x2 ∂xn · .. .. .. .. .. . . . . . x − xn (0) n ∂fn ∂fn ∂fn ··· ∂x1 ∂x2 ∂xn
Power flow calculations
(22)
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson method: theory
Solution for multivariable nonlinear equations Summarized, we can write the following: y = f [x(0)] + J(0) · [x − x(0)]
(23)
or solving for x: x = x(0) + J(0)−1 · [y − f (x(0))]
(24)
or in its recursive form: xi+1 = xi + J−1 · [y − f (xi )] i
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
(25)
September 19, 2011
22 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow Remember Ii = Si∗
Pn
=
j=1 Yij Ui∗ · Ii
· Uj
Equivalents Si = f (Ui ) is equivalent to y = f (x) Ui+1 = Ui + Ji · [S − f (Ui )]
(26)
S is here the specified complex power at any busbar f (Ui ) is here the specified complex power at any busbar ∆Si = Ji · Ui+1
(27)
You normally know the active and reactive power injections in each node (load and generation) You want to know the complex voltages at the nodes DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow Si∗ = Ui∗
Pn
j=1
Yij · Uj
and
i = 1, . . . , n
Newton-Raphson in rectangular coordinates Pi = Ui
n X
Uj · (Gij · cos(θi − θj ) + Bij · sin(θi − θj ))
j=1 n X
Qi = −Ui
Uj · (Gij · sin(θi − θj ) − Bij · cos(θi − θj ))
(28)
(29)
j=1
Newton-Raphson in polar coordinates Pi = Ui
n X
Uj · Yij · cos(θi − θj − φij )
(30)
j=1
Qi = −Ui
n X
Uj · Yij · sin(θi − θj − φij )
(31)
j=1
note: Yij = Gij + · Bij = |Yij |∠φij DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow
Pi,
∆Pi = Pi,
scheduled
− Pi,
calc
∀PQ and PV
(32)
∆Qi = Qi,
scheduled
− Qi,
calc
∀PQ
(33)
scheduled
and Qi,
scheduled
are known from the input data
Pi, calc and Qi, calc are obtained from the calculation in rectangular or polar coordinates
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow Putting it in one equation Writing the power flow equations (both rectangular and polar) in the form of equation (25): (i) ∂P ∂P U (i) (i) ∂θ ∂U ∆θ ∆P = − (34) · ∆U ∆Q ∂Q ∂Q U U ∂U | ∂θ {z } J((U,θ)(i−1) )
Or written in a simplified form: (i) (i) (i) ∆θ ∆P H N · ∆U =− ∆Q M L U {z } |
(35)
J((U,θ)(i−1) )
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow Equation explained (i+1)
∆θi = θi
(i)
− θi
(i+1)
∆Ui = Ui
(i)
− Ui
Voltages and angles (i + 1) are updated after each iteration and used for the following step J is the Jacobian, and forms the derivative (tangent, gradient) of the power flow equations ∂P ∂Q U and U simplify the equations and results in fewer ∂U ∂U computations There are n − 1 equations for ∆P There are n − #pv − 1 equations for ∆Q The Jacobian is a square matrix (2 · n − #pv − 2) × (2 · n − #pv − 2) The Jacobian is a sparse matrix (Special techniques can be used when numerical calculations are performed) DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow Equation explained (i+1)
∆θi = θi
(i)
− θi
(i+1)
∆Ui = Ui
(i)
− Ui
Voltages and angles (i + 1) are updated after each iteration and used for the following step J is the Jacobian, and forms the derivative (tangent, gradient) of the power flow equations ∂P ∂Q U and U simplify the equations and results in fewer ∂U ∂U computations There are n − 1 equations for ∆P ⇒ Why? There are n − #pv − 1 equations for ∆Q ⇒ Why? The Jacobian is a square matrix (2 · n − #pv − 2) × (2 · n − #pv − 2) The Jacobian is a sparse matrix (Special techniques can be used when numerical calculations are performed) DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow
Full equations (polar form): off-diagonal ∂∆Pi = Hij ∂θj ∂∆Pi Uj = Nij ∂Uj ∂∆Qi = Mij ∂θj ∂∆Qi Uj = Lij ∂Uj
DVH, HE, PGT (KUL/ESAT/ELECTA)
= −Uj · Ui · Yij · sin(θi − θj − φij ) = −Uj · Ui · Yij · cos(θi − θj − φij ) = Uj · Ui · Yij · cos(θi − θj − φij ) = −Uj · Ui · Yij · sin(θi − θj − φij )
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow Full equations (polarn form): diagonal
X ∂∆Pi = Hii = Ui · Uj Yij sin(θi − θj − φij ) + Ui2 · Yii · sin(φij ) ∂θi j=1 n X
∂∆Pi Ui = Nii = −Ui · ∂Ui
∂∆Qi = Mii = −Ui · ∂θi ∂∆Qi Ui = Lii = −Ui · ∂Ui
Uj Yij cos(θi − θj − φij ) − Ui2 · Yii · cos(φij )
j=1 n X j=1 n X
Uj Yij cos(θi − θj − φij ) + Ui2 · Yii · cos(φij ) Uj Yij sin(θi − θj − φij ) + Ui2 · Yii · sin(φij )
j=1
Notice the symmetry Notice that the off-diagonal elements are also in the diagonal elements M = −N for off-diagonal elements DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow
Figure: Sparsity of the Jacobian matrix shown DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow Numerical aspects Iterative process until mismatch is below threshold (max(∆P(i) ; ∆Q(i) ) = ε < εlimit ) Quadratic convergence Major computational effort is calculating the inverse of the Jacobian The Jacobian is sparse, so special techniques can be used (less storage) Ordering schemes can increase speed Convergence is not guaranteed A good starting point is needed Flat start? Previous outcome DC load flow as starting point
Simplifications exist DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow derivative f (U, θ)0 f (U, θ)
(U, θ)∗ (U, θ)0
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Newton-Raphson power flow
Newton-Raphson and load flow derivative f (U, θ)0 f (U, θ)
(U, θ)∗ (U, θ)0
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
23 / 33
Solving the problem
Simplified Newton-Raphson
Decoupled load flow In a power system with mostly inductive lines, the power flow equations can be decoupled. (φij ≈ 90◦ ) Active power is related to the angle between nodes Reactive power is related to the voltage
∆P ∆Q
(i)
=− |
H M
N L {z
(i) (i) ∆θ · ∆U U }
(36)
J((U,θ)(i−1) )
Advantages and disadvantages + Two small inverses instead of one big + Faster as only 2 · n3 calculations are needed, and not (2 · n)3 = 8 · n3 - The two subsystems may converge differently - Convergence rate is slightly reduced - Not often used nowadays DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
24 / 33
Solving the problem
Simplified Newton-Raphson
Decoupled load flow In a power system with mostly inductive lines, the power flow equations can be decoupled. (φij ≈ 90◦ ) Active power is related to the angle between nodes Reactive power is related to the voltage
∆P ∆Q
(i)
H 0 =− 0 L {z |
(i) (i) ∆θ · ∆U U }
(37)
J((U,θ)(i−1) )
Advantages and disadvantages + Two small inverses instead of one big + Faster as only 2 · n3 calculations are needed, and not (2 · n)3 = 8 · n3 - The two subsystems may converge differently - Convergence rate is slightly reduced - Not often used nowadays DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
24 / 33
Solving the problem
Simplified Newton-Raphson
Decoupled load flow derivative f (U, θ)0 f (U, θ)
(U, θ)∗ (U, θ)0 Approximation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
24 / 33
Solving the problem
Simplified Newton-Raphson
Fast decoupled load flow In decoupled load flow, a new reduced Jacobian is determined during each iteration Of each new Jacobian, the inverse needs to be calculated Fast decoupled does not calculate a new Jacobian for each iteration h i h i ∆P(i) = [B0 ] · ∆θ(i+1) (38) (i) ∆Q = [B00 ] · ∆Ui+1 (39) U B0 and B00 are real, sparse and constant matrices Only series elements are involved (no shunts) If the system has high R/X -ratio, large voltage angle deviations or voltages which seriously differ from 1 pu, convergence problems can arise Slower convergence (more iterations) but each iteration is much faster DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
25 / 33
Solving the problem
Simplified Newton-Raphson
Fast decoupled load flow derivative f (U, θ)0 f (U, θ)
(U, θ)∗ (U, θ)0 Approximation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
25 / 33
Solving the problem
Simplified Newton-Raphson
DC load flow If we consider the system to be lossless (Y = B) And voltages to be around 1.0 pu (∆U = 0) Voltage angles between busses are small (sin(θi − θj ) ≈ (θi − θj ) and cos(θi − θj ) ≈ 1) One equation of Newton-Raphson: n X ∆P = Ui Uj · (Gij · cos(θi − θj ) + Bij · sin(θi − θj ))
(40)
j=1
[∆P] = [B0 ] · [∆δ]
(41)
B0 is real Linear system One calculation, no iterations Easy for optimizations Not correct (approximation) DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
26 / 33
Software
Outline 1
Introduction Example
2
System representation
3
The load flow problem
4
Solving the problem Gauss-Seidel Newton-Raphson power flow Simplified Newton-Raphson
5
Software
6
State estimation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
27 / 33
Software
Power flow software Demo’s + try at home Free available (open source) Matpower (matlab based): http://www.pserc.cornell.edu/matpower/ PSAT (matlab based): http://www.power.uwaterloo.ca/~fmilano/psat.htm InterPSS (Java based): http://www.interpss.org/
Professional software PSS/E Eurostag DigSilent Powerworld (demo at http://www.powerworld.com/downloads.asp)
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
28 / 33
State estimation
Outline 1
Introduction Example
2
System representation
3
The load flow problem
4
Solving the problem Gauss-Seidel Newton-Raphson power flow Simplified Newton-Raphson
5
Software
6
State estimation
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
29 / 33
State estimation
State estimation Known and unknown variables in the real power system Lines, cables, transformers, location of generation and load ⇒ all known and constant in time Voltages, currents, actual generation and load (at that moment), position of power switches, tap-changer settings,. . . ⇒ mostly unknown or variable Measurements: P, Q: Generation and load, some lines Voltage: |U| every substation. θ only with PMU (phasor measurement unit) Tap-changer settings Incomplete Measurement errors
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
30 / 33
State estimation
State estimation
State estimation: what? Monitoring or supplementing data for load flow Many measurements in the system Determining measurement errors, estimate and (statistically) analyze If needed, certain measurements should be rejected Least Squares approach Another Youtube video: least squares Has to be solved iteratively for power systems
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
30 / 33
State estimation
State estimation Weighted least-square method (measurements of the state x) z, with errors e, h(x) isthe true model z1 h1 (x1 , x2 , . . . , xn ) e1 z2 h2 (x1 , x2 , . . . , xn ) e2 z= z3 = h3 (x1 , x2 , . . . , xn ) + e3 = h(x) + e (42) z4 h4 (x1 , x2 , . . . , xn ) e4 With errors having a zero average, and each independent we get a covariance matrix R: 2 σ1 0 · · · 0 0 σ22 · · · 0 R= . (43) .. .. .. .. . . . 0 0 · · · σn2 R is the inverse of what we could call the weighting matrix R = inv (W)
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
30 / 33
State estimation
State estimation Solving the state estimation The expected values are: −1 xˆ1 xˆ2 T · W · H · HT · W · z = G−1 · HT · W · z ˆ x= ... = H | {z } G xˆn (44) ˆ x = G−1 · HT · W · (H · x + e) ˆ x=G
−1
T
· (H · W · H) ·x + G | {z }
−1
(45) T
·H ·W·e
(46)
G
ˆ z = H·ˆ x
DVH, HE, PGT (KUL/ESAT/ELECTA)
(47)
Power flow calculations
September 19, 2011
30 / 33
State estimation
State estimation: simple example
Figure: Example network
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
31 / 33
State estimation
State estimation: simple example We want to know x1 and x2 , which are voltages U1 and U2 Two amp`eremeters measuring z1 = 9.01 A and z2 = 3.02 A U1 = 16.0233 V and U2 = 8.0367 V
Two voltmeters measuring z3 = 6.98 V and z4 = 5.01 V U1 = 15.93 V and U2 = 8.05 V
The system equations can be written as: z1 z2 z3 z4 |{z}
measurements
DVH, HE, PGT (KUL/ESAT/ELECTA)
5 8
· x1 − 18 · x1 3 8 · x1 1 8 · x1
= = = = |
− + + + {z
1 8 5 8 1 8 3 8
· x2 · x2 · x2 · x2
true values from model
Power flow calculations
+ + + + }
e1 e2 e3 e4 |{z}
(48)
errors
September 19, 2011
31 / 33
State estimation
State estimation: simple example We want to know x1 and x2 , which are voltages U1 and U2 Two amp`eremeters measuring z1 = 9.01 A and z2 = 3.02 A ⇒ Conflict
U1 = 16.0233 V and U2 = 8.0367 V
Two voltmeters measuring z3 = 6.98 V and z4 = 5.01 V ⇒ Conflict
U1 = 15.93 V and U2 = 8.05 V
The system equations can be written as: z1 z2 z3 z4 |{z}
measurements
DVH, HE, PGT (KUL/ESAT/ELECTA)
5 8
· x1 − 18 · x1 3 8 · x1 1 8 · x1
= = = = |
− + + + {z
1 8 5 8 1 8 3 8
· x2 · x2 · x2 · x2
true values from model
Power flow calculations
+ + + + }
e1 e2 e3 e4 |{z}
(48)
errors
September 19, 2011
31 / 33
State estimation
State estimation: simple example
Calculating the expected values ˆ x We take the following weighting matrix (1/sigma): W = diag([100, 100, 50, 50]) The most probable values for U1 and U2 are 16.00719 and 8.02614 resp. 0.00877 0.00456 The expected error will be: ˆ e= −0.02596 −0.00070
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
31 / 33
State estimation
State estimation: simple example Measurement 4 changes z4 = 4.4 instead of z4 = 5.01 The best estimate for the voltages: U1 = 15.86807 and U2 = 7.75860 0.06228 0.15438 In that case, the expected error will be: ˆ e= 0.05964 −0.49298
When the expected error is too high, measurements can/should be disregarded Statistical test are needed to determine when errors are “high”
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
31 / 33
State estimation
State estimation: simple example Measurement 4 changes z4 = 4.4 instead of z4 = 5.01 The best estimate for the voltages: U1 = 15.86807 and U2 = 7.75860 0.06228 0.15438 In that case, the expected error will be: ˆ e= 0.05964 −0.49298
When the expected error is too high, measurements can/should be disregarded Statistical test are needed to determine when errors are “high” The weight matrix also has a serious influence on the results
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
31 / 33
State estimation
State estimation for power flow calculations
State estimator calculates voltage magnitudes and relative phase angles of the system buses Redundancy in input data With errors on all measurement data Non-DC circuit ⇒ non-linear equations: h = h(x) Iterative solutions (as in the Newton-Raphson method) are needed The principle is the same
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
32 / 33
State estimation
References
Power System Analysis; Grainger, John J. and Stevenson, William D., Jr. Computational Mehods for Electric Power Systems; Crow, Mariesa Power System Load Flow Analysis; Powell, Lynn
DVH, HE, PGT (KUL/ESAT/ELECTA)
Power flow calculations
September 19, 2011
33 / 33