Dr. Peter Avitabile
Presentation Topics
Modal Analysis & Controls Controls Laboratory Intent Modal Overview
University of Massachusetts Lowell
SDOF Theory MDOF Theory Measurement Definitions
IMAC 19 Young Engineer Program
Excitation Considerations MPE Concepts
TUTORIAL:
Linear Algebra
Basics of Modal Analysis Analysis Dr. Peter Avitabile Avitabile
[email protected] [email protected]
Friday, February 07, 2003
1
Intent of Young Engineer Program The intent of the Young Engineer Program is to expose the new or young engineer to some of the basic concepts and ideas concerning analytical and experimental modal analysis. It is NOT intended to be a detailed deta iled treatment of this material. Rather it is intended to prepare one for some of the in-depth papers presented at IMAC so that the novice novice has some appreciation of the detailed material presented in these papers. This presentation is intended to identify ide ntify the basic methodology and techniques currently employed in this field and to expose one to the typical modal jargon used used in the field.
Intent of Young Engineer Program
1
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Experimental Modal Analysis A Simple Non-Mathematical Non-Mathematical Presentation Dr. Peter Avitabile Mechanical Engineering - UMASS Lowell
Could you explain
and how is it used for solving dynamic problems?
modal analysis
Illustration by Mike Avitabile
Experimental Modal Analysis
Illustration by Mike Avitabile
1
Illustration by Mike Avitabile
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Analytical Modal Analysis Equation of motion
[M n ]{&x& n } + [C n ]{x& n } + [K n ]{x n } = {Fn ( t )}
Eigensolution
Experimental Modal Analysis
[[K n ] − λ[M n ]]{x n } = {0}
2
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Could you explain modal analysis for me ? Simple time-frequency response relationship RESPONSE
increasing rate of oscillation
FORCE
time
frequency
Experimental Modal Analysis
3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Could you explain modal analysis for me ? Sine Dwell to Obtain Mode Shape Characteristics
MODE3
MODE 1
MODE 2
Experimental Modal Analysis
MODE 4
4
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Just what are the measurements called FRFs ?
A simple inputoutput problem 8 5 2
Magnitude
Real
8
1
2
3 0 -3 8 -7
6
1.0000
-1.0000
Phase Experimental Modal Analysis
Imaginary 5
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Just what are the measurements called FRFs ? Response at point 3 due to an input at point 3
1
2
3
1
1
2
3
2
3
1
h32
2 1
2
3
3 1
2
Drive Point FRF Experimental Modal Analysis
3
h33
h31
6
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Why is only one row/column of FRFs needed ? The third row of the FRF matrix - mode 1
The peak amplitude of the imaginary part of the FRF is a simple method to determine the mode shape of the system
Experimental Modal Analysis
7
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Why is only one row/column of FRFs needed ? The second row of the FRF matrix is similar
The peak amplitude of the imaginary part of the FRF is a simple method to determine the mode shape of the system
Experimental Modal Analysis
8
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Why is only one row/column of FRFs needed ?
Any row or column can be used to extract mode shapes - as long as it is not the node of a mode ! ?
Experimental Modal Analysis
?
9
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
More measurements better defines the shape MODE # 1 MODE # 2 MODE # 3
DOF # 1
DOF #2
DOF # 3
Experimental Modal Analysis
10
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What’s the difference between shaker and impact ? 1
h 13 1
2
2
3
1
3
2 1
3 2
h 23 3
h 33
h 31 h 32
h 33
Theoretically - - Experimental Modal Analysis
11
NOTHING ! ! ! Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What measurements do I actually make ? ANALOG SIGNALS
OUTPUT
INPUT
Actual time signals
ANTIALIASING FILTERS
Analog anti-alias filter
AUTORANGE ANALYZER ADC DIGITIZES SIGNALS
OUTPUT
INPUT
Digitized time signals
APPLY WINDOWS
INPUT OUTPUT
Windowed time signals
COMPUTE FFT LINEAR SPECTRA LINEAR OUTPUT SPECTRUM
LINEAR INPUT SPECTRUM
Compute FFT of signal
AVERAGING OF SAMPLES
COMPUTATION OF AVERAGED INPUT/OUTPUT/CROSS POWER SPECTRA
INPUT POWER SPECTRUM
OUTPUT POWER SPECTRUM
CROSS POWER SPECTRUM
Average auto/cross spectra
COMPUTATION OF FRF AND COHERENCE
Compute FRF and Coherence FREQUENCY RESPONSE FUNCTION
Experimental Modal Analysis
COHERENCEFUNCTION
12
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What’s most important in impact testing ? Hammers and Tips 40
COHERENCE
dB Mag
FRF INPUT POWER SPECTRUM -60 0Hz
800Hz
40
COHERENCE FRF
dB Mag
INPUT POWER SPECTRUM
-60 0Hz
Experimental Modal Analysis
200Hz
13
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What’s most important in impact testing ? Leakage and Windows ACTUAL TIME SIGNAL
SAMPLED SIGNAL
WINDOW WEIGHTING
WINDOWED TIME SIGNAL
Experimental Modal Analysis
14
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What’s most important in shaker testing ? AUTORANGING
AVERAGING WITH WINDOW
1
2
AUTORANGING
4
3
AVERAGING
1
AUTORANGING
Random with Hanning
2
3
4
Burst Random
AVERAGING
Different excitation techniques are available for obtaining good measurements
Sine Chirp 1
2
3
4
Experimental Modal Analysis
15
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
How do I get mode shapes from the FRFs ? MODE 2
2 1
4
3
6
MODE 1 5
2 4 1 3 6
5
Experimental Modal Analysis
16
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
How do I get mode shapes from the FRFs ?
The FRF is made up from each individual mode contribution which is determined from the
a ij1
ζ
1
frequency,
ζ
a ij2 a ij3
2
ζ
3
ω
1
Experimental Modal Analysis
ω
2
ω
3
17
damping, residue
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
How do I get mode shapes from the FRFs ?
MDOF
SDOF
The task for the modal test engineer is to determine the parameters that make up the pieces of the frequency response function
Experimental Modal Analysis
18
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
How do I get mode shapes from the FRFs ?
HOW MANY POINTS ???
RESIDUAL EFFECTS
Mathematical routines help to determine the basic parameters that make up the FRF
RESIDUAL EFFECTS
HOW MANY MODES ???
Experimental Modal Analysis
19
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What is operating data ? Why and How Do Structures Vibrate?
INPUT TIME FORCE
f(t)
y(t)
FFT
IFT
INPUT SPECTRUM
f(j ω)
Experimental Modal Analysis
OUTPUT SPECTRUM
h(j ω)
20
y(j ω)
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What is operating data ? If I make measurements on a structure at an operating frequency, sometimes I get some deformation shapes that look pretty funky . Maybe they are just noise? Is that possible ???
Experimental Modal Analysis
21
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What is operating data ? But if I make a measurement at an operating frequency and its close to a mode, I can easily see what appears to be one of the modes
MODE 1 CONTRIBUTION
Experimental Modal Analysis
MODE 2 CONTRIBUTION
22
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What is operating data ? And if I make a measurement at an operating frequency and its close to another mode, I can easily see what appears to be one of the modes
Experimental Modal Analysis
23
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What is operating data ? I think I just answered my own question !!!
I think I’m starting to understand this now !!! Experimental Modal Analysis
24
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
What is operating data ? The modes of the structure act like filters which amplify and attenuate input excitations on a frequency basis OUTPUT SPECTRUM
y(j ω)
f(j ω) INPUT SPECTRUM
Experimental Modal Analysis
25
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
So what good is modal analysis ?
EXPERIMENTAL MODAL TESTING
FINITE ELEMENT MODELING
MODAL PARAMETER ESTIMATION
PERFORM EIGEN SOLUTION
Repeat until desired characteristics are obtained
RIB STIFFNER
MASS
DEVELOP MODAL MODEL
SPRING STRUCTURAL CHANGES REQUIRED Yes
USE SDM TO EVALUATE STRUCTURAL CHANGES
No
DASHPOT DONE
STRUCTURAL
The dynamic model can be used for studies to determine the effect of structural changes of the mass, damping and stiffness
DYNAMIC MODIFICATIONS
Experimental Modal Analysis
26
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
So what good is modal analysis ? Simulation, Prediction, Correlation, … to name a few FREQUENCY RESPONSE MEASUREMENTS
FINITE ELEMENT MODEL
CORRECTIONS
PARAMETER ESTIMATION
EIGENVALUE SOLVER
MODAL PARAMETERS
MODEL VALIDATION
MODAL PARAMETERS
SYNTHESIS OF A DYNAMIC MODAL MODEL
MASS, DAMPING, STIFFNESS CHANGES
STRUCTURAL DYNAMICS MODIFICATION
FORCED RESPONSE SIMULATION
MODIFIED MODAL DATA
Experimental Modal Analysis
REAL WORLD FORCES
STRUCTURAL RESPONSE
27
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Single Degree of Freedom Overview
x(t)
f(t)
m c
k 100
T = 2 π/ω n
ζ=0.1% ζ=1%
X1
ζ=2%
X2
ζ=5%
10 ζ=10% ζ=20%
0
1
-90
ζ=20%
ω/ωn
ζ=10%
t1
ζ=5%
t2
ζ=2% ζ=1% ζ=0.1%
h (s) =
-180
ω/ω n
SDOF Overview
1
1 ms 2 + cs + k Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF Definitions Assumptions • lumped mass
x(t)
• stiffness proportional to displacement • damping proportional to velocity • linear time invariant
m k
c
• 2nd order differential equations
SDOF Overview
2
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF Equations Equation of Motion d2x
dx m 2 +c dt dt
+ k x = f ( t )
or
m &x& + cx&
+ k x = f ( t )
Characteristic Equation ms 2
+ cs + k = 0
Roots or poles of the characteristic equation s1, 2
SDOF Overview
=−
c 2m
2
c + k 2m m
±
3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF Definitions Poles expressed as s1, 2 = − ζω n ±
j ω
(ζωn )2 −ωn 2 = − σ ± jωd POLE
Damping Factor
σ = ζωn
Natural Frequency
ωn =
% Critical Damping
ζ= c
k m ζωn
cc
Critical Damping
c c = 2mωn
Damped Natural Frequency
ωd = ωn 1−ζ 2
SDOF Overview
ωd
4
CONJUGATE
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
σ
SDOF - Harmonic Excitation 100
ζ=0.1%
0
ζ=1% ζ=2% ζ=5%
10 ζ=10%
-90
ζ=20%
ζ=20% ζ=10% ζ=5%
1
ζ=2% ζ=1% ζ=0.1%
-180
ω/ωn
x
δst
=
ω/ω n
1
φ=tan
(1 − β ) +(2ζβ )
SDOF Overview
2 2
2
5
2ζβ 2 1 − β
−1
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF - Damping Approximations MAG T = 2 π/ω n X1 X2
0.707 MAG
t1
ω1
ωn
ωn = Q= 2ζ ω2 − ω1 1
SDOF Overview
t2
ω2
δ = ln
6
x1 x2
≈ 2πζ
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF - Laplace Domain Equation of Motion in Laplace Domain (ms 2 +cs+k )x (s) = f (s)
with
b(s ) = (ms 2 +cs+k )
System Characteristic Equation b(s) x (s) = f (s)
x (s) = b −1 (s)f (s) = h (s)f (s)
and
System Transfer Function h (s) =
SDOF Overview
1 ms 2 + cs + k 7
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF - Transfer Function
h (s ) =
Polynomial Form
h (s) =
Pole-Zero Form Partial Fraction Form
h (s) =
Exponential Form
h(t) =
SDOF Overview
8
1 ms 2 + cs + k
1/ m (s − p1 )(s − p1* ) a1
(s − p1 ) 1 mωd
+
a1* (s − p1* )
e −ζωt sin ωd t
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF - Transfer Function & Residues
Residue a1
=
h (s)(s − p1 )
=
1 2 jmωd
related to mode shapes
Source: Vibrant Technology
SDOF Overview
s→ p1
9
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF - Frequency Response Function
h ( jω) = h (s)
SDOF Overview
s= jω
=
10
a1 ( jω − p1 )
+
a1* ( jω − p1* )
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF - Frequency Response Function Coincident-Quadrature Plot
Bode Plot
0.707 MAG
Nyquist Plot
SDOF Overview
11
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
SDOF - Frequency Response Function DYNAMIC COMPLIANCE
DISPLACEMENT / FORCE
MOBILITY
VELOCITY / FORCE
INERTANCE
ACCELERATION / FORCE
DYNAMIC STIFFNESS
FORCE / DISPLACEMENT
MECHANICAL IMPEDANCE
FORCE / VELOCITY
DYNAMIC MASS
SDOF Overview
FORCE / ACCELERATION
12
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Multiple Degree of Freedom Overview [B(s )]−1 = [H(s )] =
Adj[B(s )] det[B(s )]
=
[A(s )] det[B(s )]
f 1
p1
k1
f 2
p2
c1
f 3
p3
m2
m1
m3
k2
c2
k3
c3
R1 D1
MODE 1
MODE 2
MODE 3
R2 D2
\
M
\ { p &&} + \
MDOF Overview
C
\ { p& } + \
T K { p} = [U ] {F} \
1
R3 D3
F1
F2F3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF Definitions Assumptions
f 2
• lumped mass
m2
• stiffness proportional to displacement
k2
• damping proportional to velocity • linear time invariant
MDOF Overview
f 1
2
c2 x1
m1 k1
• 2nd order differential equations
x2
c1
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF Equations Equation of Motion - Force Balance m1&x&1+(c1 + c 2 )x& 1−c 2 x& 2 +(k 1 + k 2 )x1−k 2 x 2 =f 1 (t ) m 2 &x& 2 −c 2 x& 1+c 2 x& 2 −k 2 x1 +k 2 x 2 =f 2 (t )
Matrix Formulation m1 &x&1 m 2 &x& 2 (c1 + c 2 ) − c 2 x& 1 + x& − c c 2 2 2
Matrices and Linear Algebra are important !!!
(k 1 + k 2 ) − k 2 x1 f 1 ( t ) + = − k k x f ( t ) 2 2 2 2 MDOF Overview
3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF Equations Equation of Motion [M ]{&x&}+[C]{x& }+[K ]{x}={F( t )} Eigensolution [[K ]−λ[M ]]{x}=0 Frequencies (eigenvalues) and Mode Shapes (eigenvectors) \ Ω2 MDOF Overview
= \
ω12 2 ω 2
and [U ] = [{u1} {u 2 } \ 4
L]
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Modal Space Transformation Modal transformation
p1 {x} = [U ]{ p} = [{u1} {u 2} L]p 2 M
Projection operation
[U ]T [M ][U ]{ p&&} + [U ]T [C][U ]{ p& } + [U ]T [K ][U ]{ p} = [U ]T {F} Modal equations (uncoupled) m1
p& 1 k 1
&&1 c1 p
m2
p && 2 + \ M
MDOF Overview
c2
p& + 2 \ M
5
k 2
T p1 {u1} {F} p ={u }T{F} 2 2 \ M M
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Modal Space Transformation Diagonal Matrices Modal Mass
\
M
Modal Damping
\ { p &&} + \
C
Modal Stiffness
\ { p& } + \
T K { p} = [U ] {F} \
Highly coupled system f 1
p1
transformed into
k1
simple system MDOF Overview
6
k2
m3 c2
MODE 2
f 3
p3
m2 c1
MODE 1
f 2
p2
m1
k3
c3 MODE 3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Modal Space Transformation .. . [M]{x} + [C]{x} + [K]{x} = {F(t)} = f 1
p1 m1
{x} = [U]{p} = [{u } {u } {u } 1
2
3
k1
]{p} +
MODAL
SPACE
c1 MODE 1 f 2
p2 m2 k2
.. . T [ M ]{p} + [ C ]{p} + [ K ]{p} = [U] {F(t)}
+
c2 MODE 2 f 3
p3 m3
{u }p + {u }p + {u }p 1 1 2 2 3 3
k3
c3 MODE 3
MDOF Overview
7
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF - Laplace Domain Laplace Domain Equation of Motion
[M ]s 2 + [C]s + [K ] {x (s )} = 0 ⇒ [B(s )]{x (s )} = 0 System Characteristic (Homogeneous) Equation
[M ]s 2 +[C]s+[K ] = 0 ⇒ p k = − σ k ± jωdk
Damping
MDOF Overview
8
Frequency
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF - Transfer Function System Equation
{x (s )} [B(s )]{x (s )} = {F(s )} ⇒ [H(s )] = [B(s )] = {F(s )} −1
System Transfer Function
[A(s )] [B(s )] = [H(s )] = = det[B(s )] det[B(s )] −1
Adj[B(s )]
[A(s )]
Residue Matrix
det[B(s )]
Characteristic Equation
MDOF Overview
9
Mode Shapes Poles
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF - Residue Matrix and Mode Shapes Transfer Function evaluated at one pole
[H(s )]s =s = {u k } k
q k s− p k
{u k }T
can be expanded for all modes m
[H(s )] = ∑ k =1
MDOF Overview
T
q k {u k }{u k }
(s− p k )
10
+
q k {u
}{u } (s− p )
* T k
* k
* k
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF - Residue Matrix and Mode Shapes
Residues are related to mode shapes as
[A(s )]k = q k {u k }{u k }T a11k a12 k a13k a a a 21k 22 k 23k a 31k a 32 k a 33k M M M
MDOF Overview
L
u1k u1k u1k u 2 k u1k u 3k u u L u 2 k u 2 k u 2 k u 3k =q k 2 k 1k L u 3k u1k u 3k u 2 k u 3k u 3k M O M M
11
L
L O L
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF - Drive Point FRF
h ij ( j )
a *ij1
a ij1 ( j
p1 )
p*1 )
( j
*
a ij 2 ( j
a ij 2
p2 )
p*2 )
( j
a *ij 3
a ij 3 ( j
h ij ( j )
MDOF Overview
p3 )
*
q1u i1u j1 ( j
p*3 )
( j
q1u i1u j1
p1 )
p*1 )
( j
*
q 2 u i 2u j 2
q 2u i 2u j 2
( j
( j
p2 )
p*2 )
q 3u i 3u j 3
q 3u i 3u j 3
( j
( j
12
p3 )
*
p*3 )
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
MDOF - FRF using Residues or Mode Shapes h ij ( j )
a*ij1
a ij1 ( j
p1 )
R1
p*1 )
( j
a*ij 2
a ij 2
D1
( j
p2 )
( j
R2 D2 R3 D3
F1
F2F3 a ij1
h ij ( j )
* 1
q1u i1u j1 ( j
p1 )
MDOF Overview
* j1
qu u
p2 )
2 3
p*1 )
( j
q 2u i 2 u j 2 ( j
* i1
1
a ij2 a ij3
q*2u*i 2u*j 2 ( j
p*2 )
1
2
3
L
13
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
p*2 )
L
Time / Frequency / Modal Representation PHYSICAL
TIME
FREQUENCY ANALYTICAL
MODAL f 1
p1 m1 k1
MODE 1
+
c1 MODE 1
+ p2
+
f 2
m2 k2
MODE 2
+
+
c2 MODE 2
p3
+
f 3
m3 k3 MODE 3
MODE 3
MDOF Overview
c3
14
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Overview Analytical and Experimental Modal Analysis TRANSFER FUNCTION
[B(s)] = [M]s2 + [C]s + [K]
LAPLACE DOMAIN
[B(s)] -1 = [H(s)]
qk u j {u k }
[U]
[ A(s) ] det [B(s)] [U]
FINITE ELEMENT MODEL
ANALYTICAL MODEL REDUCTION T
[K -
MODAL PARAMETER ESTIMATION
A
M]{X} = 0
N
H(j )
LARGE DOF MISMATCH
N
X j(t) H(j ) =
X j (j ) Fi (j )
MDOF Overview
U
A
FFT Fi (t)
15
MODAL TEST
EXPERIMENTAL MODAL MODEL EXPANSION
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurement Definitions INPUT
SYSTEM
OUTPUT
u(t)
v(t) H
n(t)
x(t)
ACTUAL
m(t)
NOISE
MEASURED
y(t)
0
-10
-20
-30
-40
1.0000
-50
-60 -1.0000
dB -70
- 80
- 90
-100 -16
Measurement Definitions
1
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14 15.9375
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurement Definitions ANALOG SIGNALS
Actual time signals
OUTPUT
INPUT
ANTIALIASING FILTERS
Analog anti-alias filter
AUTORANGE ANALYZER ADC DIGITIZES SIGNALS
Digitized time signals
OUTPUT
INPUT
APPLY WINDOWS
Windowed time signals
INPUT OUTPUT
COMPUTE FFT LINEAR SPECTRA
Compute FFT of signal
LINEAR OUTPUT SPECTRUM
LINEAR INPUT SPECTRUM
AVERAGING OF SAMPLES
COMPUTATION OF AVERAGED INPUT/OUTPUT/CROSS POWER SPECTRA
INPUT POWER SPECTRUM
Average auto/cross spectra
OUTPUT POWER SPECTRUM
CROSS POWER SPECTRUM
COMPUTATION OF FRF AND COHERENCE
Compute FRF and Coherence FREQUENCY RESPONSE FUNCTION
Measurement Definitions
COHERENCEFUNCTION
2
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Leakage ACTUAL
F R E Q
DATA
CAPTURED DATA
T
T I M E
RECONTRUCTED DATA
Periodic Signal
U E N C Y
ACTUAL DATA
Non-Periodic Signal
CAPTURED DATA
T
RECONTRUCTED DATA
T
Measurement Definitions
3
Leakage due to signal distortion
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Windows 0
Time weighting functions are applied to minimize the effects of leakage
-10
-20
-30
-40
-50
Rectangular
-60
Hanning
dB -70
Flat Top
- 80
- 90
-100 -16
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14
15.9375
and many others
Windows DO NOT eliminate leakage !!! Measurement Definitions
4
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Windows Special windows are used for impact testing Force window
Exponential Window
Measurement Definitions
5
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Linear Spectra x(t) INPUT
Sx(f)
h(t)
y(t)
SYSTEM
OUTPUT
FFT & IFT
H(f)
Sy(f)
FREQUENCY
TIME
x(t)
- time domain input to the system
y(t)
- time domain output to the system
Sx(f)
- linear Fourier spectrum of x(t)
Sy(f)
- linear Fourier spectrum of y(t)
H(f)
- system transfer function
h(t)
- system impulse response
Measurement Definitions
6
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Linear Spectra +∞
+∞
∫
∫
x ( t )= Sx (f )e j2 πft df
Sx (f )= x ( t )e − j2 πft dt
−∞ +∞
∫
−∞ j2 πft
y( t )= S y (f )e
+∞
∫
S y (f )= y( t )e − j2 πft dt
df
−∞
−∞ +∞
+∞
∫
H(f )= h ( t )e − j2 πft dt
∫
h ( t )= H(f )e j2 πft df
−∞
−∞
Note: Sx and S are complex valued functions
Measurement Definitions
7
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Power Spectra R xx(t) INPUT
Gxx(f)
Ryx(t)
Ryy(t)
SYSTEM
OUTPUT
FFT & IFT
Gxy(f)
Gyy(f)
FREQUENCY
TIME
R xx(t) - autocorrelation of the input signal x(t) R yy(t) - autocorrelation of the output signal y(t) R yx(t) - cross correlation of y(t) and x(t) Gxx(f) - autopower spectrum of x(t)
G xx ( f ) = S x ( f ) • S*x ( f )
G yy(f) - autopower spectrum of y(t)
G yy ( f ) = S y ( f ) • S*y ( f )
G yx(f) - cross power spectrum of y(t) and x(t)
G yx ( f ) = S y ( f ) • S*x ( f )
Measurement Definitions
8
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Linear Spectra R xx ( τ)=E[ x ( t ), x ( t + τ)]=
lim 1
x ( t )x ( t + τ)dt ∫ T → ∞T T
+∞
∫
G xx (f )= R xx ( τ)e − j2 πft dτ=Sx (f )•S*x (f ) −∞
R yy (τ)=E[ y( t ), y( t + τ)]=
lim 1
y( t )y( t + τ)dt ∫ T → ∞T T
+∞
∫
G yy (f )= R yy (τ)e − j2 πft dτ=S y (f )•S*y (f ) −∞
R yx ( τ)=E[ y( t ), x ( t + τ)]=
lim 1
y( t )x ( t + τ)dt ∫ T → ∞T T
+∞
∫
G yx (f )= R yx ( τ)e − j2 πft dτ=S y (f )•S*x (f ) −∞ Measurement Definitions
9
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Derived Relationships S y =HSx H1 formulation - susceptible to noise on the input - underestimates the actual H of the system
S y •S*x G yx
S y •S*x =HSx •S*x
H= = * Sx •Sx G xx
H2 formulation - susceptible to noise on the output - overestimates the actual H of the system
Other formulations for H exist
S y •S*y G yy
S y •S*y =HSx •S*y
= H= * Sx •S y G xy
COHERENCE
γ
2 xy
=
Measurement Definitions
(S y •S*x )(Sx •S*y ) (Sx •S*x )(Sy •S*y ) 10
=
G yx / G xx G yy / G xy
=
H1 H2
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Noise H=G uv /G uu INPUT
1 H1 =H G 1+ nn G uu G mm H 2 =H1+ G vv
Measurement Definitions
SYSTEM
OUTPUT
u(t)
v(t) H
n(t)
x(t)
m(t)
NOISE
y(t)
11
ACTUAL
MEASURED
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Auto Power Spectrum
x(t) OUTPUT RESPONSE
INPUT FORCE
G xx (f)
yy
AVERAGED INPUT
AVERAGED OUTPUT
POWER SPECTRUM
POWER SPECTRUM
Measurement Definitions
12
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Cross Power Spectrum
AVERAGED INPUT
AVERAGED OUTPUT
POWER SPECTRUM
POWER SPECTRUM
G yy (f)
G xx (f)
AVERAGED CROSS POWER SPECTRUM
G yx(f) Measurement Definitions
13
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - Frequency Response Function
AVERAGED INPUT
AVERAGED CROSS
AVERAGED OUTPUT
POWER SPECTRUM
POWER SPECTRUM
POWER SPECTRUM
G yx (f)
G yy (f)
G xx (f)
FREQUENCY RESPONSE FUNCTION
H(f) Measurement Definitions
14
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Measurements - FRF & Coherence Coherence 1
Real
0 0Hz
AVG:
5
200Hz
COHERENCE Freq Resp 40
dB Mag
-60 0Hz
AVG:
5
200Hz
FREQUENCY RESPONSE FUNCTION
Measurement Definitions
15
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations 1
2
3
h 13 1
1
2
3
2 1
3
2
h 23 3
h 33
h 31
h 33
h 32
Excitation Considerations
1
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - Impact The force spectrum can be customized to some extent through the use of hammer tips with various hardnesses. CH1 Time
CH1 Time
7
1.8
Real
Real
-3
-200 -976.5625us
123.9624ms
-976.5625us
CH1 Pwr Spec
123.9624ms
CH1 Pwr Spec
-20
-10
dB Mag
dB Mag
-70
-110 0Hz
6.4kHz
0Hz
CH1 Time
6.4kHz
CH1 Time
3.5
8
Real
Real
-1.5
-2 -976.5625us
123.9624ms
-976.5625us
CH1 Pwr Spec
123.9624ms
CH1 Pwr Spec
-20
-10
dB Mag
dB Mag
-120
-110 0Hz
Excitation Considerations
6.4kHz
0Hz
2
6.4kHz
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - Impact/Exponential The excitation must be sufficient to excite all the modes of interest over the desired frequency range. 40
COHERENCE
dB Mag
FRF INPUT POWER SPECTRUM -60 0Hz
800Hz
40
COHERENCE FRF
dB Mag
INPUT POWER SPECTRUM
-60 0Hz
Excitation Considerations
200Hz 3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - Impact/Exponential The response due to impact excitation may need an exponential window if leakage is a concern.
ACTUAL TIME SIGNAL
SAMPLED SIGNAL
WINDOW WEIGHTING
WINDOWED TIME SIGNAL
Excitation Considerations
4
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - Shaker Excitation AUTORANGING
AVERAGING WITH WINDOW
Leakage is a serious concern
Random with Hanning
1
2
AUTORANGING
4
3
Accurate FRFs are necessary
AVERAGING
Burst Random 1
AUTORANGING
2
3
Special excitation techniques can be used which will result in leakage free measurements without the use of a window
4
AVERAGING
Sine Chirp 1
2
3
4
as well as other techniques Excitation Considerations
5
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - MIMO Multiple referenced FRFs are obtained from MIMO test
Energy is distributed better throughout the structure making better measurements possible Ref#1
Excitation Considerations
6
Ref#2
Ref#3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - MIMO
Large or complicated structures require special attention
Excitation Considerations
7
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - MIMO
[G XF ]=[H ][G FF ] H12 H11 H H 22 21 [H ]= M M H No ,1 H No , 2
L L
L
H1, Ni
H 2, Ni
M H No, Ni
Measurements are developed in a similar fashion to the single input single output case but using a matrix formulation
where
[H ]=[G XF ][G FF ]−1
Excitation Considerations
No - number of outputs Ni - number of in uts
8
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Excitation Considerations - MIMO Measurements on the same structure can show tremendously different modal densities depending on the location of the measurement
Source: Michigan Technological University Dynamic Systems Laboratory
Excitation Considerations
9
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Modal Parameter Estimation Concepts j [A k ] A*k [A k ] A*k upper [A k ] A*k [H(s )]= ∑ + +∑ + + ∑ + * * s s ( ) s s ( ) s s (s−s*k ) − − − ( ) ( ) ( ) s s s s − − terms k = i terms k k k k k lower
SYSTEM EXCITATION/RESPONSE
SDOF POLYNOMIAL
PEAK PICK MULTIPLE REFERENCE FRF MATRIX DEVELOPMENT
INPUT FORCE
RESIDUAL COMPENSATION
LOCAL CURVEFITTING
IFT
INPUT FORCE
GLOBAL CURVEFITTING INPUT FORCE
POLYREFERENCE CUVREFITTING
COMPLEX EXPONENTIAL
Modal Parameter Estimation Concepts
1
MDOF POLYNOMIAL
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Parameter Estimation Concepts NO COMPENSATION Y
y=mx X
COMPENSATION
Y
Y
y=mx+b X
WHICH DATA ??? Y
X X
Modal Parameter Estimation Concepts
2
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Parameter Extraction Considerations HOW MANY POINTS ???
ORDER OF THE MODEL
RESIDUAL EFFECTS
AMOUNT OF DATA TO BE USED RESIDUAL EFFECTS
COMPENSATION FOR RESIDUALS
HOW MANY MODES ???
The test engineer identifies these items NOT THE SOFTWARE !!! Modal Parameter Estimation Concepts
3
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Parameter Extraction Considerations HOW MANY POINTS ???
lower
H s terms
s
sk
j
k i
A*k
A k
A*k
A k s
sk
s
upper
terms
s*k
s
RESIDUAL EFFECTS
* k
s
A*k
A k s
sk
RESIDUAL EFFECTS
s
s*k HOW MANY MODES ???
[A k ] A*k [H(s )] = lower residuals + ∑ + + upper * (s−s k ) k = i (s−s k ) j
Modal Parameter Estimation Concepts
4
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Parameter Extraction Considerations
The basic equations can be cast in either the time or frequency domain
h (s)=
a1
+
a1*
h ( t )=
(s − p1 ) (s − p1* )
Modal Parameter Estimation Concepts
5
1 mωd
e −σt sin ωd t
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Parameter Extraction Considerations MODAL PARAMETER ESTIMATION MODELS Time representation
h ij ( n ) ( t ) + a 1h ij ( n −1) ( t ) + L + a 2 n h ij ( n − 2 N ) ( t ) = 0 Frequency representation
[( jω)
2 N
+ a 1 ( jω)
[( jω)
Modal Parameter Estimation Concepts
2M
2 N −1
+ b1 ( jω)
6
]
+ L + a 2 N h ij ( jω) = 2 M −1
+ L + b 2 M
]
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Parameter Extraction Considerations The FRF matrix contains redundant information regarding the system frequency, damping and mode shapes Multiple referenced data can be used to obtain better estimates of modal parameters
Modal Parameter Estimation Concepts
7
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Selection of Bands Select bands for possible SDOF or MDOF extraction for frequency domain technique. Residuals ???
Modal Parameter Estimation Concepts
Complex ???
8
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Mode Determination Tools Summation
MIF
A variety of tools assist in the determination and selection of modes in the structure 1 Point Each From Panels 1,2, a nd 3 (37,49,241) 4
10
3
10
2
10
1
10 CMIF
0
10
-1
10
-2
10 0
50
100
150
200
250 Frequency (Hz)
300
350
400
450
500
CMIF Modal Parameter Estimation Concepts
Stability Diagram 9
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Modal Extraction Methods Peak Picking
Circle Fitting
SDOF Polynomial
A multitude of techniques exist
IFT
Complex Exponential
MDOF Polynomial Methods Modal Parameter Estimation Concepts
10
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Model Validation Synthesis
Validation tools exist to assure that an accurate model has been extracted from measured data 1.2
1
0.8
0.6
0.4
0.2
0
S1
S2
S3
S4
S5
S6
MAC
Modal Parameter Estimation Concepts
11
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Concepts s1 s 2 [A ] = [{u1} {u 2} {u 3} L] s3
x 0 [U]= . . 0
Linear Algebra Concepts
x
.
.
.
x
.
.
.
0
x
.
.
.
0
x
.
.
0
[Adjo int[A ]] [A]−1= Det[A ]
{v1}T {v }T 2 T {v3} O M
x .
A
nm
{X}m ={B}n
[A ]nm =[V ]nn [S]nm[U]Tmm {X}m =[A]gnm{B}n =[[V]nn [S]nm[U]Tmm ] {B}n g
{X}m =[[U ]mm[S]gnm[V ]Tnn ]{B}n
1
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra The analytical treatment of structural dynamic systems naturally results in algebraic equations that are best suited to be represented through the use of matrices Some common matrix representations and linear algebra concepts are presented in this section
Linear Algebra Concepts
2
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Common analytical and experimental equations needing linear algebra techniques G yf
[H ] = [G yf ][G ff ]−1
= [H ] [G ff ]
[[K ]−λ[M ]]{x}=0
[M ]{&x&}+[C]{x& }+[K ]{x}={F( t )}
[B(s )]−1 = [H(s )] =
[B(s )]{x (s )} = {F(s )}
O or [H(s )] = [U ] S Linear Algebra Concepts
3
Adj[B(s )] det[B(s )]
[L ]T O
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Matrix Notation A matrix [A] can be described using row,column as
a11 a12 a a 21 22 [A ] = a 31 a 32 a a 41 42 a 51 a 52 ( row ,
a 13
a 14
a 23
a 24
a 33
a 34
a 43
a 44
a 53
a 54
column )
[A] T -Transpose - interchange rows & columns [A] H - Hermitian - conjugate transpose
Linear Algebra Concepts
4
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Matrix Notation A matrix [A] can have some special forms Diagonal
Square a 11 a 21 [A ] = a 31 a 41 a 51
a 12
a 13
a 14
a 22
a 23
a 24
a 32
a 33
a 34
a 42
a 43
a 44
a 52
a 53
a 54
a 15
a 25 a 35 a 45 a 55
a 22 a 33 a 44
a 55
Toeplitz
Symmetric a 11 a 12 [A ] = a13 a 14 a15
a 11 [A ] =
Triangular
a 12
a 13
a 14
a 22
a 23
a 24
a 23
a 33
a 34
a 24
a 34
a 44
a 25
a 35
a 45
a 15
a 25
a 35 a 45 a 55
Linear Algebra Concepts
a 5 a 4 [A ] = a 3 a 2 a1
a9
a7
a8
a5
a6
a7
a8
a4
a5
a6
a7
a3
a4
a5
a6
a2
a3
a4
a 5
a 15
a 12
a 13
a 14
a 22
a 23
a 24
a 25
0
a 33
a 34
a 35
0
0
a 44
a 45
0
0
0
Vandermonde
a6
5
a11 0 [A ] = 0 0 0
1 1 [A ] = 1 1
a1
a 12
a2
a 22
a3
a 32
a4
a 24
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
a 55
Matrix Manipulation A matrix [C] can be computed from [A] & [B] as
a 11 a12 a13 a 14 a a 21 22 a 23 a 24 a 31 a 32 a 33 a 34 c 21
b11 a 15 b 21 a 25 b 31 a 35 b 41 b 51
b12
b 22
c c 11 12 b 32 = c 21 c 22 b 42 c 31 c32 b 52
= a 21 b11 + a 22 b 21 + a 23 b31 + a 24 b 41 + a 25 b 51 c ij
= ∑ a ik b kj k
Linear Algebra Concepts
6
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Simple Set of Equations A common form of a set of equations is
[A ] {x} = [ b ] Underdetermined # rows < # columns more unknowns than equations (optimization solution) Determined # rows = # columns equal number of rows and columns Overdetermined # rows > # columns more equations than unknowns (least squares or generalized inverse solution)
Linear Algebra Concepts
7
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Simple Set of Equations This set of equations has a unique solution 2x − y = 1
− x + 2 y − 1z = 2 −y+z =3
2 − 1 0 x 1 − 1 2 − 1 y = 2 0 − 1 1 z 3
whereas this set of equations does not 2x − y = 1
− x + 2 y − 1z = 2 4x − 2 y = 2
Linear Algebra Concepts
2 − 1 0 x 1 − 1 2 − 1 y = 2 4 − 2 0 z 2
8
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Static Decomposition A matrix [A] can be decomposed and written as
[A ] = [L ] [U ] Where [L] and [U] are the lower and upper diagonal matrices that make up the matrix [A]
x x [L] = x x x
0
0
0
x
0
0
0
x 0 [U ] = 0 0 0
0
x x 0 0 x x x 0 x x x x
Linear Algebra Concepts
9
x
x
x
x
x
x
x x
0 x x x 0 0 x x 0 0 0 x
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Static Decomposition Once the matrix [A] is written in this form then the solution for {x} can easily be obtained as
[A] = [L ] [U ] [U ] {X} = [L]−1 [B] Applications for static decomposition and inverse of a matrix are plentiful. Common methods are Gaussian elimination
Crout reduction
Gauss-Doolittle reduction
Cholesky reduction
Linear Algebra Concepts
10
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Eigenvalue Problems Many problems require that two matrices [A] & [B] need to be reduced
[[B] − λ[A ]] {x} = 0
[A ]{&x&} + [B]{x} = {Q( t )}
Applications for solution of eigenproblems are plentiful. Common methods are Jacobi
Givens
Subspace Iteration
Linear Algebra Concepts
Householder Lanczos
11
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Singular Valued Decomposition Any matrix can be decomposed using SVD
[A ] = [U ][S][V ]T [U] - matrix containing left hand eigenvectors [S] - diagonal matrix of singular values [V] - matrix containing right hand eigenvectors
Linear Algebra Concepts
12
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Singular Valued Decomposition SVD allows this equation to be written as
s1 s 2 [A ] = [{u1} {u 2 } {u 3 } L] s3
{v1}T {v }T 2 T {v3 } O M
which implies that the matrix [A] can be written in terms of linearly independent pieces which form the matrix [A]
[A ] = {u1}s1{v1}T + {u 2 }s 2 {v 2 }T + {u 3 }s 3 {v 3 }T +
Linear Algebra Concepts
13
L
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Singular Valued Decomposition Assume a vector and singular value to be
1 u1= 2 and s1 = 1 3 Then the matrix [A ] 1 can be formed to be 1 1 2 3 [A1 ] = {u1} s1 {u1}T = 2 [1]{1 2 3} = 2 4 6 3 3 6 9 The size of matrix [A ] 1 is (3x3) but its rank is 1 There is only one linearly independent piece of information in the matrix Linear Algebra Concepts
14
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Singular Valued Decomposition Consider another vector and singular value to be
1 u 2= 1 and s2 = 1 − 1 Then the matrix [A ] 2 can be formed to be 1 1 1 − 1 [A 2 ] = {u 2 } s 2 {u 2 }T = 1 [1]{1 1 − 1} = 1 1 − 1 − 1 − 1 − 1 1 The size and rank are the same as previous case Clearly the rows and columns are linearly related Linear Algebra Concepts
15
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Singular Valued Decomposition Now consider a general matrix [A ] 3 to be
2 3 2 [A 3 ] = 3 5 5 = [A1 ] + [A 2 ] 2 5 10 The characteristics of this matrix are not obvious at first glance. Singular valued decomposition can be used to determine the characteristics of this matrix
Linear Algebra Concepts
16
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Singular Valued Decomposition The SVD of matrix [A ] 3 is
1 [A ] = 2 3
1 1 − 1
0 1 {1 2 3} 0 1 {1 1 − 1} 0 0 {0 0 0}
or
1 1 0 T T [A ] = 21{1 2 3} + 1 1{1 1 − 1} + 00{0 0 0}T 3 − 1 0 These are the independent quantities that make up the matrix which has a rank of 2 Linear Algebra Concepts
17
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications The basic solid mechanics formulations as well as the individual elements used to generate a finite element model are described by matrices 12 6L − 12 6L 4L2 − 6L 2L2 EI 6L [k ] = 3 L − 12 − 6L 12 − 6L 6L 2L2 − 6L 4L i
j
i
13L 156 − 22L 54 2 − 13L − 3L2 ρAL − 22L 4L [m] = 420 54 − 13L 156 22L 13L − 3L2 22L 4L2
j
E, I F
i
σ x C11 σ C y 21 σ C {σ} = [C]{ε}⇒ z = 31 τxy C41 τ xz C51 τ yz C61 Linear Algebra Concepts
F
L
j
C12
C13
C14
C15
C 22
C 23
C 24
C 25
C32
C33
C34
C35
C 42
C 43
C 44
C 45
C52
C53
C54
C55
C 62
C 63
C 64
C 65
18
C16 ε x
C 26 ε y C36 ε z C 46 γ xy C56 γ xz C 66 γ yz
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications Finite element model development uses individual elements that are assembled into system matrices
Linear Algebra Concepts
19
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications Structural system equations - coupled
[M ]{&x&}+[C]{x& }+[K ]{x}={F( t )} Eigensolution - eigenvalues & eigenvectors
[[K ]−λ[M ]]{x}=0 Modal space representation of equations - uncoupled \ \ \ M { p&&} + C { p&} + K { p} = [U]T{F} \ \ \
Linear Algebra Concepts
20
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications Multiple Input Multiple Output Data Reduction G yx
[H ] = [G yx ][G xx ]−1
= [H ] [G xx ] [Gyx]
=
[H]
[Gxx]
=
RESPONSE (MEASURED)
FREQUENCY RESPONSE FUNCTIONS (UNKNOWN)
FORCE (MEASURED)
Matrix inversion can only be performed if the matrix [Gxx] has linearly independent inputs
Linear Algebra Concepts
21
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications Principal Component Analysis using SVD
s1 s 2 [G xx ] = [{u1} {u 2 } {0} L] 0 [Gxx]
{v1}T {v }T 2 T {0} O M
SVD of the input excitation matrix identifies the rank of the matrix - that is an indication of how many linearly independent inputs exist Linear Algebra Concepts
22
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications SVD of Multiple Reference FRF Data
{v1}T {v }T 2 T {v3 } O M
s1 s 2 [H ] = [{u1} {u 2 } {u 3 } L] s3 [H]
FREQUENCY RESPONSE FUNCTIONS
0
50
100
150
200
250 Frequency (Hz)
300
350
400
450
500
SVD of the [H] matrix gives an indication of how many modes exist in the data Linear Algebra Concepts
23
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications Least Squares or Generalized Inverse for Modal Parameter Estimation Techniques
[A k ] A*k + [H(s )] = ∑ (s−s*k ) k = i (s−s k ) j
Least squares error minimization of measured data to an analytical function Linear Algebra Concepts
24
Dr. Peter Avitabile Modal Analysis & Controls Laboratory
Linear Algebra Applications Extended analysis and evaluation of systems
[K ][][U ] = [M I ][U ] `ω2
[U ][K ][U] = [U] [M ][U ][`ω ] T
T
2
I
I
[K I ] = [K S ] + [V ]T [`ω2 + K S ][V ]
− [[K S ][U ][][U ] [M I ]]− [[K S ][U ][][U ] [M I ]] T
T
T
[K I ] = [K S ] + [V ]T [`ω2 + K S ][V ] − [[K S ][U ][][V ]] − [[K S ][U ][V ]]T generally require matrix manipulation of some type
Linear Algebra Concepts
25
Dr. Peter Avitabile Modal Analysis & Controls Laboratory