03- Analisis Rangkaian Rangkaian AC
PSEA
MODUL-03 ANALISIS RANGKAIAN RANGKAIAN AC
Tujuan: Setelah mengikuti perkuliahan dengan pokok bahasan ini, mahasiswa akan dapat memahami konsep dasar dan dapat melakukan analisis rangkaian listrik AC. Materi: 1. Gelombang AC 2. Diagram Phasor 3. Resistansi dan Reaktansi Komponen LRC 4. Rangkaian Kombinasi LRC 5. Resonansi Rangkaian LRC
Perbedaan mendasar antara rangkaian listrik AC dan DC adalah bagaimana tegangan atau arus listrik tersebut dibangkitkan, baik oleh sumber rangkaian (catu daya) maupun oleh sinyal masukan. Pada rangkaian DC, sumber listriknya adalah searah dan tidak mempunyai frekuensi, sedangkan pada rangkaian listrik AC sumber listriknya adalah bolak-balik (umumnya periodik) dan mempunyai frekuensi. Sehingga bahasan respon frekuensi pada rangkaian listrik AC menjadi sangat penting.
3.1
GELOMBANG AC
Umumnya arus AC mempunyai polaritas yang selalu berubah secara periodik. Polaritasnya berubah dari positif ke negatif dan sebaliknya dalam satu siklus yang dinamakan satu periode (T), sehingga bentuk gelombang AC didefinisikan sebagai gelombang yang besar dan arahnya selalu berubah. Suatu fungsi AC murni, baik itu catu daya ataupun sinyal umumnya direpresentasikan sebagai bentuk gelombang sinus sebagai berikut:
V (t ) V m sin ( t )
(3.1)
f adalah frekuensi anguler, dan dimana V m adalah amplitudo gelombang, 2
adalah pergeseran fase dari titik origin (lihat gambar 3.1). Karakteristik utama dari Gelombang/Sinyal AC murni adalah sebagai berikut:
Periode (T (T ), ), adalah waktu yang diperlukan untuk terjadi satu siklus gelombang penuh (dinyatakan dalam detik). Untuk gelombang sinus, istilah lain yang sering digunakan adalah Periodic Time (waktu periodik), untuk gelombang kotak (square waves) digunakan istilah Pulse Width (lebar pulsa). Frekuensi (ƒ), banyaknya gelombang yang terjadi selama waktu satu detik, dan dinyatakan dengan satuan Hertz (Hz). Frekuensi adalah kebalikan dari periode.
Modul-3
Hal-1
03- Analisis Rangkaian AC
PSEA
Amplitudo ( A), adalah besaran atau simpangan maksimum sinyal, diukur dalam volt atau amper.
y = A sin ( t+ )
y
y = A sin ( t- ) y = A sin t
0
2
t
Gambar 3.1: Bentuk gelombang AC murni
Bentuk gelombang periodik yang sering digunakan dalam bidang elektronika adalah gelombang sinusoidal. Namun demikian, yang perlu diingat bahwa bentuk gelombang AC tidak selalu dalam bentuk sinus atau cosinus murni. Bentuk gelombang AC dapat juga berupa gelombang kompleks yang lain seperti gelombang kotak (square wave) atau gelombang segitiga (triangular wave). Gambar 3.2 menunjukkan beberapa bentuk gelombang AC yang sering digunakan dalam bidang elektronika.
Gelombang Sinus o d u t i l p m A
Gelombang Kompleks
Gelombang Segitiga o d u t i l p m A
waktu
waktu
Gelombang Kotak
waktu
waktu
Gambar 3.2: Beberapa contoh gelombang periodik
Amplitudo Seperti telah dijelaskan di depan, amplitudo adalah simpangan maksimum atau puncak suatu gelombang. Istilah lain dalam bidang elektronika yang sering digunakan untuk menyatakan amplitudo adalah V max (tegangan maksimum) atau I max (arus Modul-3
Hal-2
03- Analisis Rangkaian AC
PSEA
maksimum). Kedua nilai puncak tersebut diukur dari garis nol ( zero baseline). Tidak seperti pada tegangan atau arus DC, nilai tegangan dan arus AC selalu berubah sepanjang waktu. Untuk gelombang AC murni, nilai amplitudo dalam satu siklus adalah sama untuk positif dan negatif (+ V max = - V min), tapi untuk bentuk gelombang kompleks, nilai puncak maksimum belum tentu sama dengan nilai puncak minimum, dan bisa sangat berbeda. Kadang-kadang nilai puncak dinyatakan dalam istilah peakto-peak (V pp), artinya tegangan puncak maksimum-ke-puncak minimum.
Nilai Rata-rata Nilai rata-rata dari gelombang sinus murni dalam satu siklus penuh adalah nol. Hal ini karena bagian positif dan bagian negatif akan saling meniadakan. Untuk itu definisi tegangan rata-rata adalah dihitung dalam setengah siklus, perhatikan gambar 3.3 di bawah ini.
V
V 3
V max
V 2
V Rata-rata V N
V 1
Siklus positif
0
t
Siklus positif 1 Periode V min
Gambar 3.3: Nilai rata-rata gelombang AC
Untuk mencari nilai rata-rata (dalam setengah siklus) pada gelombang AC (non-sinusoidal), maka perlu dilakukan pencuplikan nilai amplitudo dal am setengah siklus tersebut, selanjutnya dicari nilai -rata-ratanya secara matematik.
V rata rata
V 1 V 2 ... V N N
(3.2)
Sedangkan untuk gelombang sinus murni, secara analisis matematik nilai rata-ratanya diberikan oleh:
V ratarata 0,637 x V max
(3.3)
Ninal RMS (Root Mean Square)-nilai efektif Nilai rata-rata gelombang AC tidaklah sama dengan nilai-rata gelombang DC, hal ini karena gelombang AC selalu berubah terhadap waktu. Jika ditinjau dari “heating effect ” dalam hal konsumsi daya listriknya (diberikan oleh P=I 2R), akan
Modul-3
Hal-3
03- Analisis Rangkaian AC
PSEA
selalu berubah. . Nilai ekivalen untuk gelombang AC yang sama dengan gelomang DC dalam hal mengkonsumsi daya dinamakan sebagai “ nilai efektif ”. Nilai efektif gelombang AC adalah sama dengan (I 2R), artinya nilai daya adalah proporsional dengan kuadrat arus. Oleh karena itu, arus efektif sebuah gelombang AC disebut sebagai nilai “Root Mean Squared (RMS)”. Nilai RMS inilah yang setara dengan nilai ekivalen DC. Nilai RMS gelombang AC dinyatakan sebagai berikut:
V 1 V 2 ... V N 2
V RMS
2
2
(3.4)
N
Sedangkan untuk gelombang sinus murni, secara analisis matematik nilai RMS diberikan oleh:
V RMS
1 2
x V max 0,707 x V max
(3.5)
Definisi Form Factor dan Crest Factor Walaupun jarang digunakan, istilah Form Factor dan Crest Factor dapat digunakan untuk memberikan informasi tentang bentuk gelombang AC secara aktual. Form Factor adalah rasio antara nilai rata-rata dengan nilai RMS-nya, diberikan oleh:
Form Factor
V RMS
(3.6)
V Rata rata
Untuk Gelombang Sinus murni
Form Factor
0,707 xV max 0,637 xV max
1,11
(3.7)
Sedangkan Crest Factor adalah rasio antar nilai RMS dengan nilai puncak, yakni:
Crest Factor
V max V RMS
(3.8)
Untuk gelombang sinus murni Crest Factor=1,414.
3.2
DIAGRAM PHASOR
Diagram phasor digunakan untuk menyatakan fase gelombang dalam bentuk vektor rotasi. Ini dapat digunakan untuk menggantikan istilah “mendahului” atau “meninggalakan” antara gelombang satu terhadap lainnya. Perhatikan gambar 3.4 di bawah ini. Pada gambar tersebut, sinyal tegangan V mendahului arus I sebesar 30 derajat. Dalam diagram phasor ini bisa dinyatakan seperti pada gambar 3.4b.
Modul-3
Hal-4
03- Analisis Rangkaian AC
PSEA
Tegangan, V Arus, I
V = V m sin ( t)
2
30
o
T e r t i n g g a l
I = I m s i n
(
t - )
Gambar 3.4: Beda fase V dan I
Diagram phasor dapat dinyatakan dalam bentuk bilangan kompleks rectanguler (S plane), atau dalam bentuk polar, seperti pada gambar 3.5.
f i t i s o P r e n i j a m I u b m u S
Z A Z=6+j4
Sumbu Real Positif
(a)
(b)
Gambar 3.5: Diagram Phasor dalam bentuk (a) S-Plane dan (b) Polar
Konversi polar ke rectanguler dapat dilakukan dengan cara sebagai berikut: misalkan
Z A (bentuk polar) maka x
A cos
dan y
(3.9)
A sin
sehingga
Z x jy (bentuk rectanguler, S-plane)
(3.10)
Jika persamaan (3.10) ditransformasi lagi ke bentuk polar, maka
A Modul-3
x 2 y 2
dan
tan 1 ( y / x)
(3.11) Hal-5
03- Analisis Rangkaian AC
PSEA
Aturan penting lainnya dalam diagram polar, diantaranya adalahoperasi perkalian dan pembagian.
Z 1 A1 1
Misal
dan
Z 2 A2 2
maka:
Z 1 Z 2 ( A1 A2 )( 1 2 )
(3.12)
A 1 ( 1 2 ) Z 2 A2
(3.14)
Z 1
Bentuk eksponensial dari Z A x jy
A(cos j sin ) adalah:
Z Ae j (bentuk eksponensial)
3.3
(3.15)
RESISTANSI DAN REAKTANSI KOMPONEN L-R-C
Pada modul sebelumnya kita telah diskusikan respon V-I pada catu daya atau sinyal DC. Pada bahasan kali ini kita akan mendiskusikan respon komponen LRC ketika diberi arus atau tegangan AC.
RESISTANSI AC
Gambar 3.6: Resistansi AC Gambar 3.6 adalah suatu rangkaian AC dengan resistor tunggal. Respon V-I rangkaian ini dapat dianalisis sebagai berikut: Misal
V (t ) V me j t
Maka tegangan di terminal positif resistor R adalah
V R (t ) V ( t ) V me j t
(3.16)
dari hukum Ohm, arus yang mengalir p ada R adalah:
I R (t )
V m R
e j t
V R ( t ) R
(3.17)
Sehingga
Modul-3
Hal-6
03- Analisis Rangkaian AC
PSEA
I R (t ) I me j t
dimana
I m
V m
(3.18)
R
Ini artinya arus yang mengalir pada resistansi R mempunyai fase yang sama dengan tegangannya, dan besarnya arus maksimum adalah sama dengan tegangan maksimum dibagi dengan besarnya R (lihat gambar 3.7). Dalam nilai RMS, ini diberikan oleh:
I RMS
I m
V RMS
R. I m
2
2
amper
(3.19)
volt
(3.20)
Pada rangkaian AC, formulasi V/I tidak disebut sebagai Resistansi, namu sebagai “Impedansi”. Khusus untuk resistor murni nilai imdedansi sama dengan nilai resistansinya, atau Z =R. Dalam bentuk kompleks, impedansi dari resistor murni R dinyatakan dalam:
Z R j 0 R
(3.21) V R(t) = V m sin ( t) I R(t)
V m R
sin ( t )
t
Gambar 3.7: Hubungan V-I untuk Resistor murni
INDUKTANSI AC
Gambar 3.8: Indukstansi AC Pada rangkaian gambar 3.8, besarnya tegangan di titik L adalah:
Modul-3
Hal-7
03- Analisis Rangkaian AC
PSEA
V L ( t ) V (t ) V me j t
(3.22)
Jika arus melewati komponen induktor L, maka:
I L (t )
t
1 L
V
L ( t )
dt
(3.23)
0
sehinggga
I L (t )
1 L
t
dt
1
j t
V me
0
j L
j t
V me
j L
V L (t )
(3.24)
Jadi untuk rangkaian induktif murni, selisih arus terhadap tegangan adalah (-j) atau L 2 fL disebut sebagai arus tertunda sebesar 90o terhadap tegangan. Nilai reaktansi induktif dari komponen L. Besarnya arus maksimum adalah:
I m
V m
(3.25)
L
Gambar 3.9: Hubungan V-I untuk Induktor murni Dalam diagram phasor
X L
V L 90 I L0
X L j L 0 jX L L 90 Z 90
(3.26) (3.27)
Kapasitansi AC
Gambar 3.10: Kapasitansi AC
Modul-3
Hal-8
03- Analisis Rangkaian AC
PSEA
Pada rangkaian gambar 3.10, besarnya tegangan pada kapasitor adalah:
V C ( t ) V (t ) V m e j t
(3.28)
Arus yang melewati komponen kapasitor C:
I C (t ) C
dV C (t )
(3.29)
dt
sehinggga
I C (t ) C
d (V m e j t )
j C (V me
dt
Z C X C
V C I C
1
C
j t
) j CV C (t )
(3.30)
1
(3.31)
2 fC
Jadi untuk rangkaian kapasitif murni, selisih arus terhadap tegangan adalah (+j) atau arus mendahului sebesar 90o terhadap tegangan. Nilai (1 / C ) (1 / 2 fC ) disebut sebagai reaktansi kapasitif dari komponen C. Besarnya arus maksimum adalah:
I m CV m
(3.32)
Ic
Vc
Gambar 3.11: Hubungan V-I untuk Kapasitor murni
X C
V C 0 I C 90
X C 0
Modul-3
1 j C
Z 90
0
j L
L 90 Z 90
(3.26)
(3.27)
Hal-9
03- Analisis Rangkaian AC
PSEA
3.4
RANGKAIAN KOMBINASI L-R-C
Kombinasi RL Seri
Gambar 3.12: Rangkaian kombinasi RL seri dan d iagram vektornya
Dari gambar di atas, dapat diturunkan beberapa persaman sebagai berikut:
V 2 V R2 V L2 V
(3.28)
V R2 V L2
( I . R) 2 ( I . X L ) 2 I R 2 X L2
(3.29)
Jadi
I
Nilai
V
(3.30)
R X 2
R 2 X L2
2 L
merupakan kuantitas impedansi total dari rangkaian RL seri. Jika
dinyatakan dalam bentuk bilangan kompleks:
Z T R jX L R j L
(3.31)
Besarnya arus yang melewati rangkaian dapat dihitung:
I
Modul-3
V Z T
1 R j L
V me j
(3.32)
Hal-10
03- Analisis Rangkaian AC
PSEA
Kombinasi RC Seri
Gambar 3.13: Rangkaian kombinasi RC seri dan di agram vektornya
Dengan cara yang sama seperti di atas, didapatkan:
V 2 V R2 V C 2 ( I . R) 2 ( I . X C ) 2
(3.33)
V
(3.34)
I
Nilai
V R2 V C 2 I R2 X C
2
V
(3.35)
2 R 2 X C
2 R 2 X C merupakan kuantitas impedansi total dari rangkaian RC seri. Jika
dinyatakan dalam bentuk bilangan kompleks:
Z T R
j
(3.36)
C
Besarnya arus yang melewati rangkaian dapat dihitung:
I
Modul-3
V Z T
1
R
j
V me j
(3.37)
C
Hal-11
03- Analisis Rangkaian AC
PSEA
Kombinasi RLC Seri
Gambar 3.13: Rangkaian kombinasi RLC seri dan d iagram vektornya Menurut KVL:
V S V R V L V C IR L
dI dt
Q
(3.38)
C
Analisis vektor rangkaian ini (dari vektor in dividunya):
V S 2 V R2 (V L V C ) 2
(3.39)
V S
V R2 (V L V C ) 2
(3.40)
V S
( I . R) 2 ( I . X L I . X C ) 2 I R 2 ( X L X C ) 2
(3.41)
R 2 ( X L X C ) 2
(3.42)
Maka
Z
V I
Dalam bentuk phasor, impedansi Z adalah:
Z R j L
1 j L
R j ( L
1
) C
(3.43)
Nilai atau magnitudo dari impedansi ini adalah:
1 Z R L C 2
Modul-3
2
(3.44)
Hal-12
03- Analisis Rangkaian AC
PSEA
Rangkaian RLC Parallel
Gambar 3.14: Rangkaian kombinasi RLC paralel
Dalam penyelesaian rangkaian paralel, penggunaan admintansi lebih memudahkan daripada impedansi. Untuk rangkaian di atas, besarnya impedansi kompleks dapat dinyatakan dengan:
1 Z
1
R
1
X L
1
(3.45)
X C 1
Kondukstansi
G
Admintansi
Y
Suseptansi Induktif
B L
Suseptansi Kapasitif BC
(3.46)
R 1
(3.47)
Z
1 X L 1
X C
1
(3.48)
j L
j C
(3.49)
Maka persamaan (3.45) dapat dinyatakan kembali sebagai:
Y
1 R
1 j L
j C
1 R
j ( C
1
L
)
(3.50)
Sehingga magnitudo admintansi rangkaian RLC paralel adalah: 2
1 1 Y C L R
2
(3.51)
atau magnitudo impedansinya:
Z
Modul-3
1
Y
1 2
1 1 C L R
2
(3.52)
Hal-13
03- Analisis Rangkaian AC
PSEA
3.5
RESONANSI RANGKAIAN L-R-C
Dalam rangkaian RLC, peristiwa resonansi terjadi jika reaktansi induktif (X L) sama dengan reaktansi kapasitif (X C). Frekuensi yang bertepatan dengan kondisi ini dinamakan sebagai frekuensi resonansi (f r).
Rangkaian Resonansi Seri Lihat kembali rangkaian LRC seri pada gambar 3.13. Dalam rangkaian ini, jika nilai-nilai: XL > XC, maka rangkaian bersifat induktif XC > XL, maka rangkaian bersifat kapasitif Total reaktansi adalah: XT = (XL - XC) atau XT = (XC – XL) Total impedansi adalah:
Z R X T atau R+jXT 2
2
Frekuensi resonansi terjadi jika X L=XC. Dari yang sudah dijelaskan di depan, ini dapat digambarkan seperti gambar 3.15 di bawah.
Bersifat Kapasitif
Bersifat Induktif
l a t o T i s n a t k a e R
Frekuensi, f Gambar 3.15: Kondisi resonansi rangkaian RLC seri Syarat resonansi:
X L X C 2
Modul-3
1 LC
L
1
(3.53)
C 1 LC
f
1 2 LC
(3.54)
Hal-14
03- Analisis Rangkaian AC
PSEA
Pada saat resonansi, reaktansi kapasitif dan induktif saling meniadakan, sehingga reaktansi total sama dengan nol (X T=0). Ini berarti impedansi total rangkaian akan berharga minimum, yaitu:
Z R 2 X T 2 R
(3.55)
Ketika impedansi rangkaian minimum, maka arusnya maksimum. Ini berarti daya yang diserap oleh rangkaian adalah maksimum. Sehingga dapat dikatakan bahwa pada peristiwa resonansi terjadi penyerapan daya ol eh rangkaian secara maksimum. Sudut fase pada rangkaian LRC seri dan peristiwa resonansi dapat dilihat pada gambar 3.16 di bawah ini.
Gambar 3.16: Sudut fase pada rangkaian LRC seri
Bandwidth (lebar pita) frekuensi resonansi Seperti telah dijelaskan di atas bahwa pada peristiwa resonansi akan terjadi penyerapan daya maksimum oleh rangkaian. Besarnya daya yang diserap adalah P = I2Z. Besarnya arus efektif (IRMS) didefinisikan sebagai 0,707 arus maksimum, atau 70,7%. Nilai ini kalau dinyatakan dalam dB adalah -3dB dari nilai maksimumnya. Kalau ini ditarik garis mendatar pada grafik resonansi akan diperoleh gambar 3.17. Dua frekuensi batas/pertemuan ini disebut sebagai half-power points. Jika frekuensi bawah kita sebut f L dan frekuensi atas kita sebut f H, maka lebar pita frekuensi (BW) didefinisikan sebagai:
BW f H f L
(3.56)
dimana, nilainya dapat dihitung: 2
1 R L LC 2 L 2 L R
2
1 R H LC 2 L 2 L R
Modul-3
(3.57)
(3.58)
Hal-15
03- Analisis Rangkaian AC
PSEA
Frekuensi,
f
Gambar 3.17: Bandwidth dari Rangkaian Resonansi LRC seri
Satu lagi besaran yang penting dalam hal ini, yakni Quality factor (Q). Quality factor didefinisikan sebagai "sharpness" dari kurva resonansi, ini tidak lian adalah magnitudonya. Q faktor adalah energi yang disimpan oleh rangkaian.
Q
f r BW
1
L
R
C
(3.59)
Gambar 3.18: Quality factor (Q)
Modul-3
Hal-16