LAPORAN AKHIR PRAKTIKUM LABORATORIUM LINGKUNGAN
OLEH:
KELOMPOK
: II (DUA)
JURUSAN
: TEKNIK LINGKUNGAN
FAKULTAS
: TEKNIK
ANGGOTA
: 1. WIGA ANDINA P.
(1010941006)
2. RIRI DIANA
(1010941014)
3. RIZKI ANANDA
(1010942002)
4. SIDRA FIMEYLIA
(1010942010)
5. FAUZI OKTAFIANTO
(1010942012)
6. MUHAMMAD AMMAR
(1010942022)
7. IRMA SURIANTI
(1010942024)
8. AMAMIL KHAIRA
(1010942028)
LABORATORIUM KUALITAS UDARA JURUSAN TEKNIK LINGKUNGAN FAKULTAS TEKNIK UNIVERSITAS ANDALAS PADANG 2012
BAB II TINJAUAN PUSTAKA 2.1 Umum Pencemaran udara adalah masuknya atau dimasukkannya zat, energi, dan/atau komponen lain ke dalam udara ambien oleh kegiatan manusia, sehingga mutu udara ambien turun sampai ke tingkat tertentu yang menyebabkan udara ambien tidak dapat memenuhi fungsinya. Pengendalian pencemaran udara adalah upaya pencegahan dan/atau penanggulangan pencemaran udara serta pemulihan mutu udara. Sumber pencemar adalah setiap usaha dan/atau kegiatan yang mengeluarkan bahan pencemar ke udara yang menyebabkan udara tidak dapat berfungsi sebagaimana mestinya (Peraturan Pemerintah RI Nomor 41, 1999). Partikel adalah pencemar udara yang dapat berada bersama-sama dengan bahan atau bentuk pencemar lainnya. Partikel dapat diartikan secara murni atau sempit sebagai bahan pencemar udara yang berbentuk padatan. Namun dalam pengertian yang lebih luas, dalam kaitannya dengan masalah pencemaran lingkungan, pencemar partikel dapat meliputi berbagai macam bentuk, mulai dari bentuk yang sederhana sampai dengan bentuk yang rumit atau kompleks yang kesemuanya merupakan bentuk pencemaran udara (Anonymous A, 2008). Sumber pencemaran partikel dapat berasal dari peristiwa alami dan dapat juga berasal dari aktivitas manusia. Sumber pencemaran partikel akibat aktivitas manusia sebagian besar berasal dari pembakaran batubara, proses industri, kebakaran hutan dan gas buangan alat transportasi. Pencemaran partikel yang berasal dari alam, adalah sebagai berikut (Anonymous A, 2008): 1. Debu tanah/pasir halus yang terbang terbawa oleh angin kencang; 2. abu dan bahan-bahan vulkanik yang terlempar ke duara akibat letusan gunung berapi; 3. semburan uap air panas di sekitar daerah sumber panas bumi di daerah pegunungan. Dalam pengambilan contoh uji, yang perlu diperhatikan untuk penentuan lokasi pengabilan contoh uji adalah bahwa data yang diperoleh harus dapat mewakili daerah yang sedang dipantau, yang telah memenuhi persyaratan yang telah ditetapkan/ Titik pemantauan kualitas udara ambien ditetapkan dengan mempertimbangkan (SNI 19-7119.6-2005): 1. Faktor meteorologi (arah dan kecepatan angin); 2. faktor geografi seperti topografi; dan 3. tata guna lahan.
2.2 Total Suspended Particulate (TSP) Partikel adalah pencemar udara yang dapat berada bersama-sama dengan bahan atau bentuk pencemar lainnya. Partikel dapat diartikan secara murni atau sempit sebagai bahan pencemar udara yang berbentuk padatan (Prabu, 2008). Partikulat digunakan untuk memberikan gambaran partikel cair atau padat yang tersebar di udara dengan ukuran 0,001 µm sampai 500 µm. Partikulat mengandung zat-zat organik maupun zat-zat non organik yang terbentuk dari berbagai macam materi dan bahan kimia. Ukuran partikel dapat menggambarkan seberapa jauh partikel dapat terbawa angin, efek yang ditimbulkannya, sumber pencemarannya dan lamanya masa tinggal partikel di udara (Prabu, 2008). Berdasarkan lamanya partikel tersuspensi di udara dan rentang ukurannya, partikel dapat dibedakan menjadi 2 macam, yaitu (Prabu, 2008): 1.
Dust fall (settleable particulate) adalah partikel berbentuk lebih besar dari 10 µm;
2.
suspended Particulate Matter (SPM) adalah partikel yang ukurannya lebih kecil dari 10µm dan keberadaannya terutama berasal dari proses industri dan pembakaran.
Sumber pencemaran partikel akibat aktivitas manusia sebagian besar berasal dari pembakaran batubara, proses industri, kebakaran hutan dan gas buangan alat transportasi. Partikel di atmosfer dalam bentuk suspensi, yang terdiri atas partikel-partikel padat cair. Ukuran partikel dari 100 µm hingga kurang dari 0,01 µm. Terdapat hubungan antara ukuran partikel polutan dengan sumbernya. Partikel sebagai pencemar udara mempunyai waktu hidup, yaitu pada saat partikel masih melayang-layang sebagai pencemar di udara sebelum jatuh ke bumi. Waktu hidup partikel berkisar antara beberapa detik sampai beberapa bulan. Sedangkan kecepatan pengendapannya tergantung pada ukuran partikel, massa jenis partikel serta arah dan kecepatan angin yang bertiup (Prabu, 2008). Besarnya ukuran partikel debu yang dapat masuk ke dalam saluran pernapasan manusia adalah yang berukuran 0,1 µm sampai 10 µm dan berada di udara sebagai suspended particulate matter. Partikel debu dengan ukuran lebih besar 10 µm akan lebih cepat mengendap ke permukaan sehingga kesempatan terjadinya pemajanan pada manusia menjadi lebih kecil dan kalaupun terjadi akan tertahan oleh saluran pernapasan bagian atas. Debu yang dapat dihirup disebut debu inhalable dengan diameter ≤10 µm dan berbahaya bagi saluran pernapasan karena mempunyai kemampuan merusak paru-paru. Sebagian debu yang masuk ke saluran pernapasan berukuran 5 µm akan sampai ke alveoli.
Total Suspended Particulate (TSP) merupakan campuran yang sangat rumit dari berbagai senyawa organik dan anorganik yang terbesar di udara dengan diameter yang sangat kecil, mulai dari <1 µm sampai dengan maksimal 500 µm (Anonymous B, 2011). Sumber Total Suspended Particulate (TSP) adalah sebagai berikut (Anonymous A, 2011): 1.
Debu tanah kering yang terbawa oleh angin atau berasal dari muntahan letusan gunung berapi;
2.
pembakaran yang tidak sempurna dari bahan bakar yang mengandung senyawa karbon murni atau bercampur dengan gas-gas organik;
3.
pembakaran batu bara yang tidak sempurna sehingga terbentuk aerosol kompleks dari butir-butiran tar;
4.
pembakaran sampah domestik dan sampah komersial;
5.
berbagai proses industri seperti proses penggilingan dan penyemprotan.
Sifat Total Suspended Particulate (TSP) adalah sebagai berikut (Anonymous B, 2011): 1. Sifat fisik Berupa butiran-butiran kecil zat padat dan tetes-tetes air. Terdapat dalam lapisan atmosfer dan merupakan bahan pencemar udara yang sangat berbahaya. Partikulat yang umum ditemukan di atmosfer adalah aerosol, berdiameter lebih kecil dari 20 µm yang dapat tetap di udara dan mudah bergerak seperti gas. 2. Sifat kimia Mengandung berbagai senyawa kimia yang berbeda, dengan berbagai ukuran dan bentuk yang berbeda pula, tergantung dari mana sumber emisinya. Dampak Total Suspended Particulate (TSP) terhadap kesehatan adalah sebagai berikut (Anonymous A, 2011): 1. Partikulat berukuran kecil dapat langsung masuk ke dalam paru-paru dan mengendap di alveoli sehingga menyebabkan: a) Memperlambat pertukaran oksigen dan karbon dioksida dalam darah, sehingga menyebabkan sesak napas; b) tegang hati, karena harus bekerja lebih keras untuk mengkompensasi hilangnya oksigen. 2. Partikulat yang lebih besar dapat mengganggu saluran pernapasan bagian atas dan menyebabkan iritasi; 3. Partikulat debu yang melayang dan berterbangan dibawa angin akan menyebabkan iritasi pada mata dan dapat menghalangi daya tembus pandang mata (visibility).
Pengendalian Total Suspended Particulate (TSP) adalah sebagai berikut (Anonymous B, 2011): 1. Pencegahan a) Dengan melengkapi alat penangkap debu (Electro precipitator); b) dengan melengkapi water sprayer pada cerobong; c) pembersihan ruangan dengan sistem basah; d) pemeliharaan dan perbaikan alat penangkap debu; e) menggunakan masker. 2. Penanggulangan Penanggulangan untuk mengatasi pencemar TSP adalah dengan cara memperbaiki alat yang rusak.
Gambar 2.1 High Volume Sampler
2.3 Particulate matter 10 (PM10) Partikulat adalah padatan atau likuid di udara dalam bentuk asap, debu dan uap, yang dapat tinggal di atmosfer dalam waktu yang lama. Di samping mengganggu estetika, partikel berukuran kecil di udara dapat terhisap ke ke dalam sistem pernafasan dan menyebabkan penyakit gangguan pernafasan dan kerusakan paru-paru. Partikulat juga merupakan sumber utama haze (kabut asap) yang menurunkan visibilitas (Anonymous C, 2011). Partikel yang terhisap ke dalam sistem pernafasan akan disisihkan tergantung dari diameternya. Partikel berukuran besar akan tertahan pada saluran pernafasan atas, sedangkan partikel kecil (inhalable) akan masuk ke paru-paru dan bertahan di dalam tubuh dalam waktu yang lama. Partikel inhalable adalah partikel dengan diameter di bawah 10 µm (PM10). PM10 diketahui dapat meningkatkan angka kematian yang disebabkan oleh penyakit jantung dan
pernafasan, pada konsentrasi 140 µg/m3 dapat menurunkan fungsi paru-paru pada anak-anak, sementara pada konsentrasi 350 µg/m3 dapat memperparah kondisi penderita bronkhitis. Toksisitas dari partikel inhalable tergantung dari komposisinya. PM10 merupakan salah satu pencemar berbentuk partikulat. PM10 adalah material yang terdispersi di udara, baik berbentuk padat maupun cair yang berukuran berukuran 2,5 sampai 10 m. Sumber (PM10) berbeda untuk setiap daerah, tergantung dari aktivitas di daerah tersebut (Anonymous C, 2011). PM10 dapat berupa (Anonymous C, 2011): 1. Asap, kotoran dan debu dari pabrik, pertanian, dan jalan; 2. jamur, spora dan serbuk sari. Partikel yang terhirup (inhalable) juga dapat merupakan partikulat sekunder, yaitu partikel yang terbentuk di atmosfer dari gas-gas hasil pembakaran yang mengalami reaksi fisik-kimia di atmosfer, misalnya partikel sulfat dan nitrat yang terbentuk dari gas SO2 dan NOX. Umumnya partikel sekunder berukuran 2,5 µm atau kurang. Proporsi cukup besar dari PM2,5 adalah amonium nitrat, ammonium sulfat, natrium nitrat dan karbon organik sekunder. Partikel-partikel ini terbentuk di atmosfer dengan reaksi yang lambat sehingga sering ditemukan sebagai pencemar udara lintas batas yang ditransportasikan oleh pergerakan angin ke tempat yang jauh dari sumbernya. Partikel sekunder PM2,5 dapat menyebabkan dampak yang lebih berbahaya terhadap kesehatan bukan saja karena ukurannya yang memungkinkan untuk terhisap dan masuk lebih dalam ke dalam sistem pernafasan tetapi juga karena sifat kimiawinya. Partikel sulfat dan nitrat yang inhalable serta bersifat asam akan bereaksi langsung di dalam sistem pernafasan, menimbulkan dampak yang lebih berbahaya daripada partikel kecil yang tidak bersifat asam. Partikel logam berat dan yang mengandung senyawa karbon dapat mempunyai efek karsinogenik atau menjadi carrier pencemar toksik lain yang berupa gas atau semi-gas karena menempel pada permukaannya. Termasuk ke dalam partikel inhalable adalah partikel Pb yang diemisikan dari gas buang kendaraan bermotor yang menggunakan bahan bakar mengandung Pb. Timbal adalah pencemar yang diemisikan dari kendaraan bermotor dalam bentuk partikel halus berukuran lebih kecil dari 10 dan 2,5 µm (Harrop, 2002). Sumber PM10 adalah sebagai berikut (Anonymous C, 2011): 1. Pembakaran bahan bakar minyak, (gasoline, diesel fuel); 2. konstruksi, proses-proses industri seperti pembuatan besi dan baja; 3. pertambangan; 4. pembakaran sisa pertanian (jerami); 5. kebakaran hutan.
Langkah-langkah untuk mengurangi PM10 (Anonymous C, 2011): 1. Clean Air Act yang dibuat oleh pemerintah dan menambah pajak bagi industri yang melakukan pencemaran udara; 2. mengembangkan teknologi yang ramah lingkungan dan dapat diperbaharui diantaranya Fuel Cell dan Solar Cell; 3. menjaga kebersihan lingkungan tempat tinggal. Berdasarkan sifatnya debu dikategorikan pada (Prabu, 2011): 1. Sifat pengendapan yaitu debu yang cenderung selalu mengendap karena gaya gravitasi bumi; 2. sifat permukaan basah sifatnya selalu basah dilapisi oleh lapisan air yang sangat tipis; 3. sifat penggumpalan karena sifat selalu basah maka debu satu dengan yang lainnya cenderung menempel membentuk gumpalan. Tingkat kelembaban di atas titik saturasi dan adanya turbelensi di udara mempermudah debu membentuk gumpalan. Debu listrik statik, debu mempunyai sifat listrik statis yang dapat menarik partikel lain yang berlawanan dengan demikian partikel dalam larutan debu mempercepat terjadinya penggumpalan; 4. sifat opsis, partikel yang basah/lembab lainnya dapat memancarkan sinar yang dapat terlihat dalam kamar gelap. Berdasarkan macamnya debu juga dapat dikelompokan ke dalam (Prabu, 2011): 1. Debu organik (debu kapas, debu daun daunan, tembakau dan sebagainya); 2. debu mineral (merupakan senyawa kompleks : SiO2, SiO3, arang batu dll) dan; 3. debu metal (debu yang mengandung unsur logam: Pb, Hg, Cd, Arsen, dll). Berdasarkan segi karakter zatnya debu terdiri atas (Prabu, 2011): 1. Debu fisik (debu tanah, batu, mineral, fiber); 2. kimia (mineral organik dan inorganik); 3. biologis (virus, bakteri, kista) dan; 4. debu radioaktif. Di tempat kerja jenis-jenis debu ini dapat ditemui di kegiatan pertanian, pengusaha keramik, batu kapur, batu bata, pengusaha kasur, pasar tradisional, pedagang pinggir jalan dan lain lain. Ukuran debu sangat berpengaruh terhadap terjadinya penyakit pada saluran pernafasan (Prabu, 2011). Berdasarkan hasil penelitian ukuran tersebut dapat mencapai target organ sebagai berikut (Prabu, 2011): 1. Ukuran 5-10 µm akan tertahan oleh saluran pernafasan bagian atas;
2. ukuran 3-5 µm akan tertahan oleh saluran pernafasan bagian tengah 1-3 µm sampai di permukaan alveoli; 3. ukuran 0,5-0,1 µm hinggap di permukaan alveoli/selaput lendir sehingga menyebabkan vibrosis paru; 4. ukuran 0,1-0,5 µm melayang di permukaan alveoli. Menurut WHO (1996), ukuran debu partikel yang membahayakn adalah berukuran 0,1–5 atau 10 µm. Depkes mengisyaratkan bahwa ukuran debu yang membahayakan berkisar 0,1 sampai 10 µm. Pengaruh PM10 terhadap kesehatan manusia : 1.
Dapat menyebabkan berbagai macam penyakit, misalnya batuk, nafas pendek, penyakit paru-paru, penyakit hati, dan lain-lain;
2.
kebanyakan partikel halus itu berasal dari senyawa sulfur dan nitrogen yang dalam selang waktu beberapa jam atau beberapa hari berubah dari gas menjadi padat;
3.
salah satu partikulat yang penting dapat menyebabkan ISPA adalah mist asam sulfat (H2SO4). Zat ini dapat mengiritasi membran mukosa saluran pernafasan dan menimbulkan bronco konstriksi karena sifatnya yang iritan. Hal ini dapat merusak terhadap saluran pertahanan pernafasan (bulu hidung, silia, selaput lendir) dan menimbulkan penyakit infeksi saluran nafas akut.
Partikel yang masuk ke dalam paru-paru dapat membahayakan manusia karena (Anonymous D, 2011): a. Sifat-sifat kimia dan fisik dari partikel tersebut mungkin beracun; b. partikel yang masuk tersebut bersifat inert; c. partikel tersebut membawa molekul-molekul gas berbahaya dengan cara mengabsorbsi maupun mengadsorpsi yang menyebabkan molekul-molekul gas tersebut dapat mencapai dan tertinggal dalam paru-paru yang sensitif. Penyebaran bahan pencemar di udara dipengaruhi oleh faktor-faktor meteorologi sebagai berikut karena (Anonymous D, 2011) : 1. Suhu Udara Suhu udara dapat mempengaruhi konsentrasi bahan pencemar di udara sesuai dengan cuaca tertentu. Suhu udara yang tinggi menyebabkan udara makin renggang sehingga konsentrasi bahan pencemar menjadi makin rendah. Sebaliknya pada suhu yang dingin keadaan udara makin padat sehingga konsentrasi pencemar di udara makin tinggi.
2. Kelembaban Pada kelembaban yang tinggi maka kadar uap air di udara dapat bereaksi dengan pencemar di udara, menjadi zat lain yang tidak berbahaya atau menjadi pencemar sekunder. 3. Tekanan udara Tekanan udara tertentu dapat mempercepat atau menghambat terjadinya suatu reaksi kimia antara pencemar dengan zat pencemar di udara atau zat-zat yang ada di udara, sehingga pencemar udara dapat bertambah atau berkurang. 4. Angin Angin adalah udara bergerak. Akibat pergerakan udara maka akan terjadi suatu proses penyebaran yang dapat mengakibatkan pengenceran dari bahan pencemar udara, sehingga kadar suatu pencemar pada jarak tertentu dari sumber akan mempunyai kadar berbeda. Demikian juga halnya dengan arah dan kecepatan angin mempengaruhi kadar bahan pencemar setempat. 5. Sinar Matahari Sinar matahari dapat mempengaruhi kadar bahan pencemar di udara karena dengan adanya sinar matahari tersebut maka beberapa pencemar udara dapat dipercepat atau diperlambat reaksinya dengan zat-zat lain di udara sehingga kadarnya dapat berbeda menurut banyaknya sinar matahari yang menyinari bumi. 6. Curah Hujan Hujan merupakan suatu partikel air di udara yang bergerak dari atas jatuh ke bumi. Dengan adanya hujan maka bahan pencemar berupa gas tertentu dapat diserap ke dalam partikel air. Begitu pula partikel debu baik yang inert maupun partikel debu yang lain dapat ditangkap dan menempel pada partikel air dan dibawa jatuh ke bumi. Dengan demikian bahan pencemar dalam bentuk partikel dapat berkurang akibat jatuhnya hujan.
Gambar 2.2 Low Volume Sampler
2.4 Pengukuran Gas Impinger Udara merupakan campuran beberapa macam gas yang perbandingannya tidak tetap, tergantung pada keadaan suhu udara/tekanan udara dan lingkungan sekitarnya. Udara adalah juga atmosfer yang berada disekeliling bumi yang berfungsi sangat penting bagi kehidupan didunia ini. Dalam udara terdapat oksigen (O2) untuk bernapas, karbon dioksida untuk proses fotosintesis oleh khlorofil daun dan ozon (O3) untuk menahan sinar ultra violet. Gas-gas lain yang terdapat dalam udara antara lain gas-gas mulia, nitrogen oksida, hidrogen, metana, belerang dioksida, amonia dan lain-lain. Apabila susunan udara menglami perubahan dari susunan keadaan normal seperti tersebut diatas dan kemudian mengganggu kehidupan manusia, hewan dan binatang, maka udara telah tercemar (Saputra, 2009). Berdasarkan Undang-undang Pokok Pengelolaan Lingkungan Hidup No. 4 Tahun 1982, polusi atau pencemaran lingkungan adalah masuknya atau dimasukkannya makhluk hidup, zat energi, dan atau komponen lain ke dalam lingkungan, atau berubahnya tatanan lingkungan oleh kegiatan manusia atau oleh proses alam sehingga kualitas lingkungan turun sampai ke tingkat tertentu yang menyebabkan lingkungan menjadi kurang atau tidak dapat berfungsi lagi sesuai dengan peruntukannya. Zat atau bahan yang dapat mengakibatkan pencemaran disebut polutan. Syarat-syarat suatu zat disebut polutan bila keberadaannya dapat menyebabkan kerugian terhadap makhluk hidup. Contohnya, karbon dioksida dengan kadar 0,033% di udara berfaedah bagi tumbuhan, tetapi bila lebih tinggi dari 0,033% dapat rnemberikan efek merusak (Anonymous E, 2011). Dalam melakukan sampling udara, kita dapat membagi daerah monitoring (pemantauan) atas tiga daerah dengan keperluan dan cara sampling yang berbeda-beda satu sama lainnya, yaitu (Saputra, 2009): 1. Daerah ambien Daerah ambien merupakan daerah tempat tinggal penduduk (pemukiman) dimana diperkirakan seseorang mengalami paparan oleh zat pencemar yang berlangsung selama 24 jam. Sehingga, konsentrasi zat pencemar udara harus sekecil mungkin dan memenuhi baku mutu udara yang dipersyaratkan. 2. Daerah tempat kerja (work place) Daerah tempat kerja (work place) merupakan daerah dimana seseorang bekerja selama periode waktu tertentu. Biasanya seseorang bekerja di industri/pabrik selama 8 jam per hari, sehingga keterpaan zat pencemar terhadap seseorang yang bekerja diharapkan tidak mengganggu kesehatannya.
3. Daerah/sumber pencemar udara Daerah/sumber pencemar udara, yang berasal dari cerobong asap pabrik perlu dilakukan monitoring terhadap jenis dan konsentrasi zat pencemar, minimal setiap penggantian teknologi proses dan penggunaan bahan baku yang berbeda. Pengertian sampling disini adalah pengambilan suatu contoh udara pada tempat-tempat tertentu, dimana diharapkan konsentrasi zat pencemar yang didapat dari hasil pengukuran dapat mewakili konsentrasi contoh secara keseluruhan.Saat melakukan sampling udara ini, ada beberapa faktor yang menentukan hasil analisisnya, diantaranya (Saputra, 2009): 1. Arah angin; 2. Kecepatan angin (m/s); 3. Waktu dan lama pengambilan contoh (jam); 4. Tekanan udara (mmHg); 5. Temperatur udara (oC); 6. Kelembapan udara (%); 7. Pola terdifusinya zat pencemar; 8. Dekat atau jauhnya industri dari lokasi sampling; 9. Jarak dan ramainya kendraan bermotor serta aktivitas penduduk. Pengukuran kualitas udara ambien bertujuan untuk mengetahui konsentrasi zat pencemar yang ada di udara. Data hasil pengukuran tersebut sangat diperlukan untuk berbagai kepentingan, diantaranya untuk mengetahui tingkat pencemaran udara di suatu daerah atau untuk menilai keberhasilan program pengendalian pencemaran udara yang sedang dijalankan. Berdasarkan proses pembentukannnya, zat pencemar di udara ambien dapat dibedakan di zat pencemar primer dan zat pencemar sekunder. Zat pencemar primer dapat didefinisikan sebagai zat pencemar yang terbentuk di sumber emisinya (SO2, NOx), sedangkan zat pencemar sekunder merupakan zat pencemar yang terbentuk di atmosfer, yang merupakan produk dari reaksi kimia beberapa zat pencemar ( seperti senyawa oksidan dan ozon ). Sedangkan berdasarkan fasanya, zat pencemar di udara dibedakan atas zat pencemar berupa aerosol, atau partikulat (debu) dan zat pencemar berupa gas (SO2, NOx, Ozon dll) (Kodri, 2010). Sulfur oksida dihasilkan dari sumber alami seperti letusan gunung berapi dan sumber buatan seperti pembakaran bahan bakar minyak bumi. Di udara Sulfur oksida mengalami reaksi fotokimia menjadi beberapa senyawa yang bersifat iritan kuat terhadap selaput lendir dan kulit. Efek terhadap hewan sama dengan efek terhadap manusia. Terhadap tumbuhan sulfur oksida akan menyebabkan nukrosis pada daun. Selain itu sifat asam dari sulfur oksida akan
berakibat pada kerusakan gedung dan bangunan bersejarah. Nitrogen oksida yang sering terdapat di udara berasal dari pembakaran. Kendaraan bermotor memproduksi NO sebanyak 98 % yang di udara akan diubah menjadi NO2. NO2 adalah zat yang toksik bagi manusia. pada kadar 50-100 ppm akan menyebabkan peradangan paru-paru bila manusia terpapar beberapa menit saja. Karbonmonoksida diproduksi dari pembakaran tidak sempurna bahan yang mengandung karbon atau pembakaran di bawah temperatur dan tekanan tinggi seperti dalam mesin. CO dalam tubuh akan berikatan dengan hemoglobin darah sehingga darah kurang mengikat oksigen, akibatnya tubuh akan kekurangan suplai oksigen. Ozon secara alami terdapat di lapisan stratosfer dan sebgian kecil di troposfer. Secara aktifitial ozon didapat dari berbagai sumber seperti peralatan listrik bervoltase tinggi, peralatan sinar rontgen dan spektrograf. Ozon bereaksi dengan segala zat organik yang dilaluinya. aozon akan mematikan sel-sel mikrofag, menstimulasi penebalan dinding arteri paru-paru (Soemirt, 2000). Teknik pengumpulan gas yang umum digunakan untuk menangkap gas pencemar di udara adalah dengan teknik absorpsi, adsorpsi, pendinginan dan pengumpulan pada kantong udara (bag sampler atau tube sampler) (Kodri, 2010): 1. Teknik absorpsi Teknik absorpsi adalah teknik pengumpulan gas berdasarkan kemampuan gas pencemar terabsorpsi/bereaksi dengan larutan pereaksi spesifik (larutan absorben). Untuk melakukan pengumpulann gas pencemar tersebut diperlukan alat absorber. Pereaksi kimia yang digunakan harus spesifik artinya hanya dapat bereaksi dengan gas pencemar tertentu yang akan di analisis. Contoh teknik absorpsi adalah pengukuran SO2 dengan metode pararosaniline, NOx dengan metode saltzman, pengukuran ozon/oksidan dengan metode NBKI. 2. Teknik adsorpsi Teknik adsorpsi berdasarkan kemampuan gas pencemar teradsorpsi pada permukaan padat adsorbent . Jenis adsorben yang umum digunakan adalah karbon aktif, TENAX-GC atau amberlite XAD). Teknik ini digunakan untuk pengumpulan gas-gas organik seperti senyawa hidrokarbon, benzene, toluene dan berbagai jenis senyawa organik yang mampu terserap pada permukaan adsorben yang digunakan. 3. Teknik evacuated Teknik pengumpulan contoh gas dengan evacuated memerlukan alat penampung gas yaitu berupa botol yang inert yang telah divakumkan atau dengan kantong udara yang terbuat dari bahan tedlar atau teflon, atau digunakan jarum suntik (gas syringe) . Teknik ini sering digunakan untuk gas pencemar dengan konsentrasi yang tinggi dan tidak memerlukan pemekatan contoh udara.
Berbagai jenis metode analisis dapat digunakan untuk mengukuran zat pencemar di udara ambien, diantaranya (Kodri, 2010): 1. Sulfur dioksida (SO2) a. Metode pararosaniline-spektrofotometri SO2 di udara diserap atau diabsoprsi oleh larutan kalium tetra kloromercurate (absorban) dengan laju flowrate 1 liter/menit. SO2 bereaksi dengan kalium tetra kloromercurate membentuk komplek diklorosulfitomercurate. Dengan penambahan pararosaniline dan formaldehide akan membentuk senyawa pararosaniline metil sulfonat yang berwarna ungu kemerahan. Intensitas warna diukur dengan spektrofotometer pada panjang gelombang 548 nm. b. Metode UV-spektrofotometri Prinsip dasar pengukuran gas SO2 dengan sinar ultra violet adalah berdasarkan kemampuan molekul SO2 berinteraksi dengan cahaya pada panjang gelombang 190–230 nm, menyebabkan elektron terluar dari molekul gas SO2 akan tereksitasi pada tingkat energi yang lebih tinggi (excited state). Elektron pada posisi tereksitasi akan kembali ke posisi ground state dengan melepaskan energi dalam bentuk panjang gelombang tertentu. Dengan mengukur intensitas cahaya tersebut maka dapat ditentukan konsentrasi gas SO2. Metode ini praktis mudah dioperasikan , stabil dan akurat, metode ini metode yang dipakai untuk alat pemantauan kualitas udara scara automatik dan kontiniu. Perlu diketahui bahwa ketelitian dan keakuratan metode ini sangat dipengarhui oleh sistem kalibrasi alat tersebut. 2. Oksida-oksida Nitrogen a. Metode griess saltman-spektrofotometri NO2 di udara direaksikan dengan pereaksi Griess Saltman (absorbent) membentuk senyawa yang berwarna ungu. Intensitas warna yang terjadi diukur dengan spektrofotometer pada panjang gelombang 520 nm. Absorber untuk penangkapan NO2 adalah absorber dengan desain khusus dan porositas frittednya berukuran 60 µm. b. metode chemiluminescence; c. gas NO diudara direaksikan dengan gas ozon membentuk nitrogen dioksida tereksitasi. NO2 yang tereksitasi akan kembali pada posisi ground state dengan melepaskan energi berupa cahaya pada panjang gelombang 600-875 nm. Intensitas cahaya yang diemisikan diukur dengan photomulltifier, Intensitas yang dihasilkan sebanding dengan konsentrasi NO di udara. Sedangkan gas NO2 sebelum direaksikan dengan gas ozon terlebih dahulu direduksi dengan katalitik konventor.
3. Karbonmonoksida a. Metode Nondispersive infrared (NDIR) Pengukuran ini berdasarkan kemampuan gas CO menyerap sinar infra merah pada panjang 4,6 µm . Banyaknya intensitas sinar yang diserap sebanding dengan konsentrasi CO di udara. Analyzer ini terdiri dari sumber cahaya inframerah, tabung sampel dan reference, detektor dan rekorder. b. Metode oksidasi CO dengan campuran CuO-MnO2 dalam suasana panas membentuk gas CO2. Selanjutnya CO2 tersebut diabsorpsi dengan larutan Ba(OH)2 berlebih. Kelebihan Ba(OH) dititrasi asam oxalat menggunakan indikator phenol phthalin . Metode yang lain adalah oksidasi CO oleh I2O5 dalam suasana panas menghasilkan gas I2. Selanjutnya gas tersebut ditangkap oleh larutan KI membentuk warna kuning dan diukur dengan spektrofotmeter. Kedua metode ini hanya cocok untuk untuk konsentrasi CO relatif tinggi 5 ppm. 4. Ozon/Oksidan a. Metode Neutral Buffer Potassium Iodine (NBKI) –spektrofotometri Gas/udara yang mengandung ozon dilewatkan dalam pereaksi kalium iodida pada buffer pH netral (pH 6,8), membebaskan Iodium. Selanjutnya iodium yang dibebaskan diukur intensitasnya pada panjang gelombang 350 nm. b. Metode Chemiluminescence Gas ozon direaksikan dengan gas asetilin membentuk aldehid yang tidak stabil , yang selanjutnya akan melepaskan energi dalam bentuk cahaya. Intensitas cahaya yang diemisikan diukur dengan fotomultiplier, yang berbanding lurus dengan konsentrasi ozon. Panjang gelombang cahaya yang diemisikan pada panjang gelombang 300 – 600 nm.
BAB III PROSEDUR PERCOBAAN 3.1 Total Suspended Particulate (TSP) dan Particulate matter 10 (PM10) 3.1.1 Alat-Alat dan Bahan Alat yang digunakan pada praktikum ini adalah: 1.
High Volume Sampler (HVS), untuk menghisap partikulat yang berukuran maksimal 100 μm;
2.
Low Volume Sampler (LVS), untuk menghisap partikulat yang berukuran maksimal 10 μm;
3.
Neraca analitik, untuk menimbang berat filter;
4.
Kertas filter (fiber glass / HVS), sebagai media untuk adsorbansi partikulat;
5.
Kompas, untuk menentukan arah mata angin;
6.
Tripod, untuk meletakkan/ menyangga eluriator;
7.
Anemoneter, untuk mengukur kecepatan angin;
8.
Pinset, untuk memindahkan filter dari suatu tempat ke tempat lainnya;
9.
Enset, sebagai sumber arus;
10. Pocket Weather Man, untuk mengukur suhu dan kelembapan; 11. Travo step down, untuk menyalurkan tenaga/ daya listrik; 12. Kabel raun, untuk menghubungkan sumber arus dengan alat yang digunakan; 13. Desikator, untuk mengkondisikan filter; 14. Global Position System (GPS), untuk menentukan koordinat titik sampling. 3.1.2 Prosedur Praktikum 3.1.2.1 Sebelum Praktikum 1. Filter dikondisikan selama 24 jam, kemudian ditimbang dengan menggunakan neraca analitik (pemberian nomor pada filter dilakukan sebelum penimbangan). Sebelum sampling dilakukan filter tidak boleh dilipat; 2. Setelah ditimbang letakkan filter di dalam file box yang telah diisi silica gel dan dilapisi kertas alumunium foil; 3. Tutup rapat file box dengan selotip, agar uap air tidak masuk.
3.1.2.2
Saat Praktikum
3.1.2.2.1 Total Suspended Particulate (TSP) 1. Siapkan sumber arus listrik, pastikan voltase alat sama dengan voltase sumber arus listrik; 2. Hidupkan HVS dan setelah berjalan 5 menit catat kecepatan aliran udara. Biarkan sampling berlangsung selama 1 jam; 3. Catat kondisi metereologi (suhu, tekanan udara, kelembapan udara, arah dan kecepatan angin) minimal setiap 10 menit, dan apabila sampling berakhir catat kembali laju aliran udara; 4. Setelah praktikum berakhir, matikan alat HVS, face plate dibuka dan filter dikeluarkan, filter dilipat sedemikian rupa sehingga bagian yang mengandung partikulat tersuspensi saling berhadapan; 5. Masukan filter tersebut ke dalam plastik; 6. Kondisikan filter dalam desikator selama minimal 24 jam. 3.1.2.2 Particulate Matter (PM 10) Low Volume Sampler (LVS) 1. Sumber arus listrik disiapkan, dipastikan voltase alat sama dengan voltase sumber arus listrik; 2. Tripod dipasang setinggi 1-1,5 m sebagai tempat untuk meletakkan elutriator; 3. Filter dengan rapi diantara face plate yang terletak pada slang yang akan menghubungkan elutriator dengan pompa vakum; 4. LVS dihidupkan dan laju aliran diatur sampai 20 l/menit pada tombol pengatur laju aliran; 5. Kecepatan aliran udara dicatat setelah alat hidup 5 menit. dibiarkan sampling berlangsung selama 1 jam; 6. Kondisi meteorologi dicatat (suhu, tekanan udara, kelembapan udara, arah, dan kecepatan angin) minimal setiap 10 menit, dan apabila sampling berakhir laju aliran udara dicatat kembali; 7. Setelah praktikum berakhir, alat LVS dimatikan, face plate dibuka dan filter dikeluarkan, filter dilipat sedemikian rupa sehingga bagian yang mengandung partikulat tersuspensi saling berhadapan; 8. Filter tersebut dimasukkan ke dalam plastik; 9. Filter dikondisikan dalam desikator selama minimal 24 jam. 3.1.2.3 Setelah Praktikum Filter yang telah dikondisikan ditimbang dengan neraca analitik minimal 5 kali pengukuran untuk masing-masing filter.
3.1.3 Perhitungan 3.1.3.1 Volume udara yang dihisap 1
2
n
n Dimana: V Q1 Q2 T n
= = = = =
volume yang terhisap (m3) kecepatan aliran udara awal (m3/mnt) kecepatan udara akhir (m3/mnt) waktu sampling (mnt) jumlah data pengukuran
3.1.3.2 Volume STP s
s
stp
s
stp stp
Dimana: Pstp Vstp Tstp
= tekanan standar = volume standar = suhu standar
(1 atm/760mmHg) (25o C/298 K)
3.1.3.3 Konsentrasi partikel tersuspensi s – o 106 stp Dimana: C Ws Wo 106
= = = =
konsentrasi partikel tersuspensi berat filter fiber glass setelah sampling berat filter fiber glass sebelum sampling konversi dari g menjadi
3.1.3.4 Konversi canter untuk partikulat 24 jam 2
t2 p ( ) t1
Dimana: C C2 t2 t1 P
= = = = =
konsentrasi partikel tersuspensi 24 jam konsentrasi partikel tersuspensi 1 jam 1 jam 2 jam konversi canter (0,17-0,2)
(µg/m3) (g) (g) (µg)
3.2
Pengukuran Gas Impinger
3.2.1 Alat dan Bahan 3.2.1.1 Alat 1. Pompa vakum untuk membantu menarik gas yang akan diserap; 2. Tabung impinger yang berisi absorban sebagai wadah tempat larutan penyerap; 3. Tabung impinger yang berisi wool untuk menyaring zat agar tidak merusak pompa; 4. Selang sebagai penghubungpenghubung; 5. Spektrofotometer untuk mengukur absorban; 6. Tabung absorban sebagai tempat larutan penyerap; 7. Anemometer, untuk mengukur kecepatan angin; 8. Pocket weatherman untuk mengukur suhu, kelembaban dan tekanan; 9. Kompas, untuk penentuan arah angin; 10. Pipet takar 10 ml untuk memindahkan larutan dengan volume tertentu; 11. Bola hisap untuk menghisap larutan yang diambil dengan pipet takar; 12. Labu ukur 25 ml untuk menakar volume larutan yang digunakan saat prktikum; 13. Tripod berfungsi sebagai penyangga kotak impinger; 14. Kuvet Spektro untuk meletakkan larutan absorban saat menghitung intensitas warna absorban di spektrofotometer; 15. Kotak impinger untuk meletakkn tabung impinger yang berisi absorban dan wol di atas tripod. 3.2.1.2 Bahan 1. Larutan penyerap SO2; 2. Larutan penyerap O3; 3. Larutan penyerap CO; 4. Larutan penyerap TCM; 5. Asam Sulfamat; 6. Formaldehid; 7. Pararosanilin; 8. Indikator amilum 0.2 %; 9. Aquades;
3.2.2 Prosedur Percobaan 3.2.2.1 Sebelum Praktikum 1. Masing-masing larutan penyerap diambil sebanyak 10 ml dengan menggunakan pipet takar; 2. Masing-masing larutan penyerap dimasukkan ke dalam botol absorban yang sudah diberi label; 3. Botol absorban yang telah berisi larutan dimasukkan ke dalam lemari pendingin. 3.2.2.2 Pada Saat Praktikum 1.
Sumber arus listrik disiapkan, dipastikan voltase alat sama dengan voltase sumber arus listrik;
2.
Tripod dipasang setinggi 1-1,5 m sebagai tempat untuk meletakan kotak impinger;
3.
Tabung impinger diisi dengan larutan penyerap sesuai dengan parameter gas yang akan diukur sebanyak 10 ml;
4.
Pompa vakum dihidupkan dan atur laju aliran udara yang dikehendaki;
5.
Sampling dilakukan selama 1 jam;
6.
Selesai batas waktu sampling yang direncanakan, panel pompa vakum diatur ke posisi off;
7.
Masing-masing tabung impinger yang berisi absorban dipindahkan ke dalam botol film dan diberi tanda sesuai peruntukannya serta disimpan dalam termos yang telah diisi batu es;
8.
Sampel dibawa ke laboratorium untuk dianalisis.
3.2.2.3 Setelah Praktikum Pembacaan absorbansi sampel dengan menggunakan alat spektrofotometer sesuai tahapan berikut: 1.
Sampel NO2 Sampel yang berisi konsentrasi NO2 di udara ambien diserap dalam larutan penyerapan yang mengandung asam sulfanilat dan N-(1-Naphtyl)-Ethylene Diamin Dihidro Cloride (NEDA) membentuk senyawa merah muda.Intensitas warna (absorbansi) yang terjadi diukur dengan alat spektrofotometer pada panjang gelombang 550 nm. Alat: 1.
Kuvet spektrofotometer
2 buah;
2.
Pipet takar 10 ml
1 buah;
3.
Bola hisap
1 buah.
Bahan : Larutan penyerap NO2 Cara Kerja: 1. 10 ml sampel dimasukkan ke kuvet; 2. 10 ml larutan penyerap NO2 dimasukkan kedalam kuvet; 3. Diukur dengan spektrofotometer pada panjang gelombang 550 nm; 4. Nilai absorban sampel yang terukur diplotkan ke kurva kalibrasi NO2. 2.
Sampel SO2 Penyerap + 1 ml asam sulfamat kemudian dikocok. Dibiarkan 10 menit, kemudian ditambahkan 2 ml formaldehid dan 5 ml pararosanilin, dikocok sampai homogen, kemudian diukur dengan panjang gelombang 548 nm. Alat: 1. Kuvet spektrofotometer
2 buah;
2. Pipet takar 10 ml
1 buah;
3. Bola hisap
1 buah;
4. Labu ukur 25 ml
2 buah.
Bahan: 1. Penyerap SO2; 2. Asam sulfamat; 3. Formaldehid; 4. Pararosanilin. Cara Kerja 1. Perlakuan blanko Ke dalam labu ukur 25 ml dimasukkan 10 ml larutan penyerap SO2 + 1 ml asam sulfamat, dikocok. Dibiarkan 10 menit, kemudian ditambahkan 2 ml formaldehid dan 5 ml pararosanilin, dikocok sampai homogen, diencerkan sampai tanda batas. 2. Perlakuan sampel 10 ml sampel diambil dan diperlakukan sama dengan blanko. 3. Blanko dan sampel dimasukkan ke dalam kuvet, diukur pada spektrofotometer pada panjang gelombang 548 nm 3.
Sampel O3 Penyerap ± 5 ml amilum, biarkan ± 15 menit. Kemudian ukur dengan panjang gelombang 395 nm. Alat
1. Kuvet spektrofotometer
2 buah;
2. Pipet takar 10 ml
1 buah;
3. Bola hisap
1 buah;
4. Labu ukur 25 ml
2 buah.
Bahan yang digunakan adalah 1. Larutan iodine 0.05 N; 2. Indikator amilum; 3. Larutan penyerap O3 Cara Kerja 1. Blanko 10 ml penyerap + 5 ml amilum, dimasukkan ke dalam labu ukur 25 ml, dibiarkan 15 menit, diencerkan sampai tanda batas. 2. Sampel 10 ml sampel + 5 ml amilum dimasukkan kedalam labu ukur 25 ml, dibiarkan 15 menit diencerkan sampai tanda batas. 4.
Sampel CO Penyerap dipanaskan dengan kompor selama 10 menit hingga penyerap berubah warna, kemudian didinginkan dan diukur dengan spektrofotometer dengan panjang gelombang 550 nm. Alat yang digunakan adalah 1. Kuvet spektrofotometer
2 buah;
2. Kompor; 3. Labu ukur 25 ml
2 buah.
Bahan : larutan penyerap CO Cara kerja 1. Blanko 10 ml penyerap dimasukkan ke dalam labu ukur 25 ml, dipanaskan 10 menit/ hingga kekuningan, didinginkan. 2. Sampel 10 ml sampel dimasukkan ke dalam labu ukur 25 ml, dipanaskan 10 menit/hingga kekuningan dan didinginkan
BAB IV DATA SAMPLING 4.1 Total Suspended Particulate (TSP) dan Particulate matter 10 (PM10) 4.1.1 Data Form Berat Filter Tabel 4.1 Berat Filter untuk Partikulat Tersuspensi No.
Berat Setelah Ws/ (gram)
Berat Sebelum/Wo (gram)
Selisih gram(gram)
1. 2.
4.4058 4.4055
4,4086 4,4090
0,0028 0,0035
3. 4.
4.4055 4.4055
4,4089 4,4089
0,0034 0,0034
5.
-
-
-
4.5269
4,5300
0,0032
Rata-rata
Sumber: Data dan perhitungan praktikum LKU, 2012
Table 4.2 Berat Filter untuk Paritculate Matter (PM10) No.
Berat Sebelum/Wo (gram)
Berat Setelah/Ws (gram)
Selisih Berat (gram)
1. 2. 3. 4. 5.
0,0928 0,0928 0,0928 -
0,0929 0,0928 0,0929 0,0929 0,0929
0,0001 0,0000 0,0001 -
Rata-rata
0,0930
0,09288
0,00013
Sumber: Data dan perhitungan praktikum LKU, 2012
4.1.2
Data Form Meteorologi Tabel 4.3 Kondisi Meteorologi
No.
Pukul (WIB)
Suhu (0C)
Tekanan (inHg)
Flowrate (cfm)
Kecepatan Angin (m/dtk)
Arah Angin
1.
07.36
25,9
28,97
36
Calm
2.
07.46
24,8
28,98
38
3.
07.56
25,6
28,98
4.
08.06
25,8
5.
08.16
6. 7. Ratarata
Kelembaban (%)
Calm
99,6
1,1
Barat Daya
100
38
0,4
Barat Daya
100
28,98
38
0,3
Selatan
100
26,9
28,99
38
0,2
Barat Daya
99,9
08.26
26,7
29,00
38
0,6
Selatan
98,9
08.36
29,4
28,80
37
calm
Calm
93,3
26,59
28,96
37,57
-
-
Sumber: Data dan perhitungan praktikum LKU, 2012
-
98,81
4.1.3 Data Form Kendaraan Tabel 4.4 Jumlah Kendaraan No.
Kendaraan
1.
Mobil berbahan bakar bensin
2.
Mobil berbahan bakar solar
3.
Motor
Jumlah 125 80 705 910
Total Sumber: Data dan Perhitungan Praktikum LK , 2012
4.1.4 Data Elevasi dan Lokasi Sampling Lokasi sampling berada di bundaran Fakultas Teknik Universitas Andalas Padang. Koordinat sampling 00o54’49,5” Lintang Selatan dan 100o27’47,9” Bujur
imur. Elevasi lokasi
sampling 913 ft. 4.2 Pengukuran Gas Impinger 4.2.1 Data Meteorolgi Data ke
Pukul (WIB)
Suhu (oC)
Tekanan (inHg)
Flowrate (m3/menit)
1 2 3 4 5 6 7 ∑ Rata2
07.27 07.37 07.47 07.57 08.07 08.17 08.27 -
26,2 28,96 29 28,7 30,5 29,6 28,98 201,94 28,84
28,96 26,4 28,97 28,96 29,4 28,96 28,6 200,25 28,60
0,1008 0,1008 0,1008 0,1008 0,1008 0,1008 0,1008 0,1008
Kecepatan Angin (m/dt) 0 0 0,4 0,8 0 0,3 0,4 -
Arah angin calm calm barat barat calm timur selatan -
Kelembaban (%) 100 100 100 93,3 94,7 88,2 94,7 670,9 95,84
Sumber: Data dan perhitungan praktikum LKU, 2012
4.2.2 Data Jumlah Kendaraan No 1 2
Jenis Kendaraan Motor Mobil
Sumber: Data dan perhitungan praktikum LKU, 2012
Jenis Bahan Bakar Bensin Solar 235 52
Keterangan 33
4.2. 3 Data Form Larutan Standar No 1 2 3 4
Gas NO2 SO2 CO O3
Sumber: Data dan perhitungan praktikum LKU, 2012
Absorban 0,137 0,003 0,171 0,04
BAB V PERHITUNGAN DATA DAN ANALISIS DATA 5.1 Total Suspended Particulate (TSP) 5.1.1 Perhitungan
Konversi Kecepatan Aliran udara dari cfm menjadi m3/mnt = 0,028 m3/mnt
1 cfm
37,57 cfm = 37, 57cfm x 0,028 m3/mnt = 1,008 m3/mnt
Volume Udara yang dihisap
V
Q1 Q 2 ... Q n T n (1,008 1,064 1,064 1,064 1,064 1,064 1,036 )m 3 /mnt) 60 mnt 7
= 63,12 m3
Volume STP o Tekanan rata-rata sampling Ps = 28,96 inHg x 25,4 = 735,584 mmHg o Suhu rata-rata sampling Ts =
26,2 + 28,96 + 29 + 28,7 + 30,5 + 29,6 + 28,98 7
= 26,59oC = 299,59o K o Volume sampling Vs = 63,12 m3 o Volume STP
Ps x Vs PSTP x VSTP Ts TSTP
VSTP
= Vs x
T Ps x STP PSTP Ts
= 63,12 m3 x
735,584 mmHg 299,59 K x 760 mmHg 303,3 K
= 60,34 m3
Konsentrasi partikulat tersuspensi untuk sampling 1 jam C1 =
=
(Ws Wo) x 106 VSTP (4,5300 4,5269) x 106 μg 66,22 m3
= 46,82µg/m3
Konversi canter untuk konsentrasi partikulat tersuspensi untuk 24 jam t
24
1
(t2 ) 1
1 C24 = 46,82 24
0,18
C2 = 26,42 µg/m3 5.1.2 Analisis Data Pada praktikum laboratorium lingkungan ini praktikan melakukan percobaan tentang pengukuran Total Suspended Particulate (TSP) dengan High Volume Sampler. Kualitas udara yang diuji adalah udara di sekitar Bundaran Teknik Fakultas Teknik Universitas Andalas dengan koordinat sampling 00o54’49,5” Lintang Selatan dan 100o27’47,9” Bujur imur. Pada saat dilakukan pengukuran di lapangan, diperoleh suhu rata – rata sebesar 26,590C, tekanan udara rata-rata 28,96 incHg, dan kelembaban rata – rata 98,81 %. Pada saat dilakukan pengukuran kondisi cuaca tidak begitu panas namun suhu meningkat seiring pertambahan waktu pengukuran. Adapun kendaraan yang melintas saat pengukuran adalah sebanyak 125 unit mobil, 80 unit bus dan 705 unit sepeda motor. Lalu lintas transportasi saat pengukuran cukup ramai seperti hari kerja biasanya sehingga partikulat yang menyebar di udara juga cukup banyak.
Setelah pengukuran dilakukan, data yang diperoleh diolah sehingga didapatkan hasil bahwa pada High Volume Sampler volume udara yang dihisap VSTP adalah sebesar 63,12 m3. Sedangkan total partikulat tersuspensinya adalah 46,82 µg/m3. Dalam praktikum ini, praktikan harus berhati-hati dalam memindahkan filter. Karena berat awal dan berat akhir suatu filter akan mempengaruhi ke nilai akhir dan konsentrasinya. Filter diperlakukan dengan sangat hati-hati. Kertas filter dilipat dengan hati hati dengan posisi kertas filter yang berisi partikulat saling berhadapan agar jika partikulat tersebut terlepas akan jatuh ke sisi kertas di hadapannya. Selain itu dalam memegang kertas juga perlu diperhatikan yaitu dengan menggunakan pinset dan jangan sampai kertas filter rusak atau robek karena jika kertas filter tersebut rusak atau robek maka partikulat didalamnya akan terlepas sehingga mengurangi berat akhir kertas tersebut. Hal ini akan menyebabkan data yang diperoleh tidak akurat. Kondisi meteorologi saat sampling memiliki pengaruh terhadap kualitas udara yang di uji. Misalnya suhu rendah dan kelembaban udara yang tinggi dapat memungkinkan partikel halus berikatan dengan uap air sehingga mudah melekat dengan partikel lain dan membentuk partikel yang lebih besar. Selain suhu dan kelembaban, kecepatan dan arah angin juga dapat mempengaruhi hasil percobaan. Kecepatan angin yang tinggi dapat mempengaruhi penyebaran partikel di udara. Hal ini menyebabkan partikel yang terserap ke dalam alat HVS menjadi lebih banyak atau lebih sedikit daripada yang seharusnya. Setelah dikonversi untuk pengukuran selama 24 jam diperoleh nilai TSP sebesar 26,42 µg/m3. Jika hasil praktikum yang telah diperoleh dibandingkan terhadap Peraturan Pemerintah Republik Indonesia Nomor 41 Tahun 1999 tentang Pengendalian Pencemaran Udara, kualitas udara yang ada di sekitar Bundaran Teknik Universitas Andalas dapat dikatakan berada di bawah baku mutu dan masih tergolong aman karena nilai konsentrasi yang diperbolehkan untuk TSP adalalah 230 µg/m3 per 24 jam. Namun pada pemaparan berulang hal ini akan menimbulkan dampak buruk yang sangat membahayakan kesehatan. Tingginya konsentrasi partikulat tersebut sebagian besarnya berasal dari buangan kendaraan bermotor yang mengandung partikulat dan gas berbahaya yang melewati daerah tersebut. Untuk itu, perlu dilakukan upaya pengurangan pencemaran dari kendaraan bermotor untuk meminimalisir dampak negatif partikulat pencemar terhadap kesehatan. Menurut ketentuan SNI 09-7118-6-2005 tentang penentuan lokasi pengambilan contoh uji pemantauan kualitas udara ambien, tercantum bahwa lokasi pengambilan contoh uji harus dapat mewakili daerah yang sedang dipantau serta jauh dari gedung atau bangunan yang tinggi. Titik pemantauan kualitas udara ambien juga mempertimbangkan faktor meteorologi, faktor geografi seperti topografi dan tata guna lahan. Melalui SNI tersebut praktikan dapat
membandingakan tepat atau tidaknya lokasi pengambilan sampel yang telah praktikan lakukan dengan prosedur yang ada di dalam SNI ini 5.2 Particulate Matter 10 (PM 10) 5.2.1 Perhitungan
Konversi Kecepatan Aliran udara dari cfm menjadi m3/mnt 1 cfm
= 0,028 m3/mnt
20 cfm
= 20 cfm x 0,028 m3/mnt = 0,56 m3/mnt
Volume Udara yang dihisap
V
Q1 Q 2 ... Q n T n (0,56 0,56 0,56 0,564 0,56 0,56 0,56 )m 3 /mnt) 60 mnt 7
= 33,6 m3
Volume STP o Tekanan rata-rata sampling Ps = 28,96 inHg x 25,4 = 735,584 mmHg o Suhu rata-rata sampling Ts =
26,2 + 28,96 + 29 + 28,7 + 30,5 + 29,6 + 28,98 7
= 26,59oC = 299,59o K o Volume sampling Vs = 33,6 m3 o Volume STP
Ps x Vs PSTP x VSTP Ts TSTP
VSTP
= Vs x
T Ps x STP PSTP Ts
= 33,6 m3 x
735,584 mmHg 299,59 K x 760 mmHg 303,3 K
= 32,12 m3
Konsentrasi partikulat tersuspensi untuk sampling 1 jam C1 =
=
(Ws Wo) x 10 6 VSTP (0,09288 0,09230) x 106 μg 66,22 m3
= 8,76 µg/m3
Konversi canter untuk konsentrasi partikulat tersuspensi untuk 24 jam t
24
1
(t2 ) 1
1 C24 = 8,76 24
0,18
C2 = 4,94 µg/m3 5.2.2
Analisis Data
Pada praktikum laboratorium lingkungan ini praktikan melakukan percobaan tentang pengukuran Particulate Matter 10 (PM10) dengan Low Volume Sampler. Kualitas udara yang diuji adalah udara di sekitar Bundaran Teknik Universitas Andalas dengan koordinat sampling 00o54’49,5” Lintang Selatan dan 100o27’47,9” Bujur imur. Pada saat dilakukan pengukuran di lapangan, diperoleh suhu rata – rata sebesar 26,590C, tekanan udara rata-rata 28,96 incHg, dan kelembaban rata – rata 98,81 %. Pada saat dilakukan pengukuran kondisi cuaca tidak begitu panas namun suhu meningkat seiring pertambahan waktu pengukuran. Adapun kendaraan yang melintas saat pengukuran adalah sebanyak 125 unit mobil, 80 unit bus dan 705 unit sepeda motor. Lalu lintas transportasi saat pengukuran cukup ramai seperti hari kerja biasanya sehingga partikulat yang menyebar di udara juga cukup banyak.
Setelah pengukuran dilakukan, data yang diperoleh diolah sehingga didapatkan hasil bahwa pada Low Volume Sampler diperoleh volume udara yang dihisap adalah sebesar 33,6 m3, total partikulat tersuspensinya adalah 8,76 µg/m3. Dalam praktikum ini, praktikan harus berhatihati dalam memindahkan filter. Karena berat awal dan berat akhir suatu filter akan mempengaruhi ke nilai akhir dan konsentrasinya. Filter diperlakukan dengan sangat hati-hati. Kertas filter dilipat dengan hati hati dengan posisi kertas filter yang berisi partikulat saling berhadapan agar jika partikulat tersebut terlepas akan jatuh ke sisi kertas di hadapannya. Selain itu dalam memegang kertas juga perlu diperhatikan yaitu dengan menggunakan pinset dan jangan sampai kertas filter rusak atau robek karena jika kertas filter tersebut rusak atau robek maka partikulat didalamnya akan terlepas sehingga mengurangi berat akhir kertas tersebut. Hal ini akan menyebabkan data yang diperoleh tidak akurat. Kondisi meteorologi saat sampling memiliki pengaruh terhadap kualitas udara yang di uji. Misalnya suhu rendah dan kelembaban udara yang tinggi dapat memungkinkan partikel halus berikatan dengan uap air sehingga mudah melekat dengan partikel lain dan membentuk partikel yang lebih besar. Selain suhu dan kelembaban, kecepatan dan arah angin juga dapat mempengaruhi hasil percobaan. Kecepatan angin yang tinggi dapat mempengaruhi penyebaran partikel di udara. Hal ini menyebabkan partikel yang terseprap ke dalam alat LVS menjadi lebih banyak atau lebih sedikit daripada yang seharusnya. Setelah dikonversi untuk pengukuran selama 24 jam diperoleh nilai PM10 sebesar 4,94 µg/m3. Jika hasil praktikum yang telah diperoleh dibandingkan terhadap Peraturan Pemerintah Republik Indonesia Nomor 41 Tahun 1999 tentang Pengendalian Pencemaran Udara, kualitas udara yang ada di sekitar Bundaran Teknik Universitas Andalas dapat dikatakan berada di bawah baku mutu dan masih tergolong aman karena nilai konsentrasi yang diperbolehkan untuk PM10 adalah sebesar 150 µg/m3 . Namun pada pemaparan berulang hal ini akan menimbulkan dampak buruk yang sangat membahayakan kesehatan. Tingginya konsentrasi partikulat tersebut sebagian besarnya berasal dari buangan kendaraan bermotor yang mengandung partikulat dan gas berbahaya yang melewati daerah tersebut. Untuk itu, perlu dilakukan upaya pengurangan pencemaran dari kendaraan bermotor untuk meminimalisir dampak negatif partikulat pencemar terhadap kesehatan. Menurut ketentuan SNI 09-7118-6-2005 tentang penentuan lokasi pengambilan contoh uji pemantauan kualitas udara ambien, tercantum bahwa lokasi pengambilan contoh uji harus dapat mewakili daerah yang sedang dipantau serta jauh dari gedung atau bangunan yang tinggi. Titik pemantauan kualitas udara ambien juga mempertimbangkan faktor meteorologi, faktor geografi seperti topografi dan tata guna lahan. Melalui SNI tersebut praktikan dapat
membandingakan tepat atau tidaknya lokasi pengambilan sampel yang telah praktikan lakukan dengan prosedur yang ada di dalam SNI ini. 5.3 Pengukuran Gas Impinger 5.3.1
Perhitungan
Tekanan rata-rata = 28,60 inhg dimana 1 inhg = 25,4 mmhg, maka: 28,85 inhg = 825,11 mmhg 0
Suhu rata-rata = 28,84 0 C = 301,84 K 5.3.2 NO 5.3.2.1 Kurva Kalibrasi NO2 Konsentrasi (X)
Absorban (Y) 0 0,1 0,5 0,8 1 2
0,000 0,028 0,125 0,208 0,250 0,500
Kurva Kalibrasi NO2 0.6 y = 0.2495x + 0.0022 R² = 0.9997
Absorban
0.5 0.4 0.3
Series1
0.2
Linear (Series1)
0.1 0 0
0.5
1 1.5 Konsentrasi
3 5.3.2.2 Konsentrasi NO2 μ g/ m
2
2.5
Y 0,0022 volumeLarutan Akhir( L) suhu( 0 K ) 760mmHg beratmolekul ( g / mol) 10 6 0,2565 lajuAliran( L / mnt) WaktuSampling (60menit) P(mmHg) 298K 24,45(l / mol)
0,137 0,0022 10 2 ( L) 301,84( 0 K ) 760mmHg 46 10 6 0,2495 1( L / mnt) 60menit 825,11(mmHg) 298K 24,45(l / mol)
= 157,97 μ g/ L
3 = 0,15797 μ g/ m
5.3.2.3 Konsentrasi 24 jam : P
0,18 T1 3 1 μ g/ m C24 = C1 = 0,15797 x 24 T 24
3 = 0,089153 μ g/ m
5.3.3 SO2 5.3.3.1 Kurva Kalibrasi SO2 Konsentrasi (X) 0 0.4 0.8 1.2 1.6 2
Absorban (Y) 0.000 0.055 0.108 0.160 0.210 0.270
Kurva Kalibrasi SO2 0.3 y = 0.1334x + 0.0005 R² = 0.9995
Absorban
0.25 0.2 0.15
Series1
0.1
Linear (Series1)
0.05 0 0
0.5
1 1.5 Konsentrasi
2
2.5
3 5.3.3.2 Konsentrasi SO2 untuk Volume Akhir 25 mL μ g/ m
Y 0,00047 volumeLarutan Akhir( L) suhu(0 K ) 760mmHg beratmolekul ( g / mol) 106 0 , 1333 lajuAliran( L / mnt) WaktuSampling (60menit) P(mmHg) 298K 24,45(l / mol)
0,003 0,00047 25 10 3 L 301,84( 0 K ) 760mmHg 64 10 6 0,1333 1(l / mnt) 60menit 825,11(mmHg) 298K 24,45(l / mol)
= 19,31 μ g/ L
3 = 0,01931 μ g/ m
5.3.3.3 Konsentrasi 24 jam : C24 = C1 T 1 T 24
P
1 3 = 0,01931 μ g/ m x 24
3 =0,0108979359 μ g/ m
0,18
5.3.4 CO 5.3.4.1 Kurva Kalibrasi CO Konsentrasi (X)
Absorban (Y) 0 0.2 0.5 0.8 1.0 2.0
0.000 0.018 0.040 0.065 0.082 0.160
Kurva Kalibrasi CO y = 0.0798x + 0.001 R² = 0.9997
0.18 0.16
Absorban
0.14 0.12 0.1 0.08
Series1
0.06
Linear (Series1)
0.04 0.02 0 0
0.5
1 1.5 Konsentrasi
2
2.5
3 5.3.4.2 Konsentrasi CO μ g/ m
Y 0,0099 0 6 0,0797 volumeLarutan Akhir( L) suhu( K ) 760mmHg beratmolekul ( g / mol) 10 lajuAliran( L / mnt) WaktuSampling (60menit) P(mmHg) 298K 24,45(l / mol)
0,171 0,0099 5 10 2 L 301,84( 0 K ) 760mmHg 28 10 6 0 , 0838 1(l / mnt) 60menit 825,11(mmHg) 298K 24,45(l / mol) = 1922,45 μ g/ L
3 = 1,92245 μ g/ m
5.3.4.3 Konsentrasi 24 jam : C24 = C1 T 1 T 24
P
1 = 1,92245 μ g/ m x
0,18
3
24
3 = 1,084968251 μ g/ m
5.3.5 O3 5.3.5.1 Kurva Kalibrasi O3 Konsentrasi (X)
Absorban (Y) 0 0.01 0.02 0.1 0.2 0.5
0.000 0.015 0.028 0.105 0.196 0.505
Absorban
Kurva Kalibrasi O3 y = 0.9988x + 0.0033 R² = 0.9995
0.6 0.5 0.4 0.3 0.2 0.1 0
Series1 Linear (Series1) 0
0.2
0.4 Konsentrasi
0.6
3 5.3.5.2 Konsentrasi O3 μ g/ m
Y 0,0033 0 6 0,9988 volumeLarutan Akhir( L) suhu( K ) 760mmHg beratmolekul ( g / mol) 10 lajuAliran( L / mnt) WaktuSampling (60menit) P(mmHg) 298K 24,45(l / mol) 0,04 0,0033 25 10 3 L 301,84( 0 K ) 760mmHg 48 10 6 0,9988 1(l / mnt) 60menit 825,11(mmHg) 298K 24,45(l / mol)
= 33,08436 μ g/ L
3 = 0,03308436 μ g/ m
5.3.5.3 Konsentrasi 24 jam : P
0,18 3 1 C24 = C1 T 1 = 0,03308436 μ g/ m x 24 T 24
3 = 0,0186717366 μ g/ m
5.3.2 Pembahasan Pada praktikum pengukuran gas di udara dengan impinger kali ini praktikan melakukan smpling di jalan bundaran Fakultas Teknik, Universits Andalas yang terletak berseberangan dengan gedung kuliah bersama H. Bundarn Fakultas Teknik ini tidak jauh dari pertigaan jalan menuju Politeknik, sehingga kendaraan baik motor, angkot maupun bus kampus akan melalui jalan pertigaan ini. Dari perhitungan yang dilakukan terhadap data yang didapat saat sampling didapatkan hasil kadar gas NO2, SO2, CO dan O3 terukur seperti yang terdapat dalam tabel berikut: Gas NO2 SO2 CO O3
Konsentrasi 1 jam (µg/m3) 24 jam (µg/m3) 0,15797 0,089153 0,1931 0,108979359 1,92245 1,084968251 0,03308436 0,0186717366
Baku mutu (PP No.41 th 1999) 1 jam/ µgr/l 24 jam(µg/m3) 400 150 900 365 30.000 10000 235
Baku mutu zat pencemar di udara ambient terdapat dalam PP No. 41 Tahun 1999 Tentang Pengendalian Pencemaran Udara. Dengan membandingkan kadar gas yang terukur dengan baku mutu yang terdapat dalam PP tersebut dapat diketahui bahwa keempat parameter pencemar udara yang diukur belum melebihi kadar maksimal yang diperbolehkan, berarti konsentrasi gas-gas pada daerah sampling tersebut masih aman dan tidak membahayakan kesehatan manusia apabila dihirup.
Hasil pengukuran yang telah didapatkan salah satunya dipengaruh karena waktu sampling yang dilakukan pada pagi hari sehingga kadar gas pencemar udara di sekitar daerah sampling masih rendah. Kadar gas tertinggi adalah gas CO, diikuti oleh NO2, SO2 dan terakhir O3. Hal ini kemungkinan besar terjadi karena sebagian besar sumber pencemar yang ada di wilyah sampling adalah buangan kendaraan yang melewati jalan yang ada di dekat wilyah sampling. Salah satu zat yang dihasilkan dari pembakaran kendaraan bermotor adalah CO dan NOx sehigga kedua gas ini kadarnya lebih banyak dibanding yang lain. Lokasi sampling yang jauh dari daerah industri menyebabkan konsentrasi gas SO2 masih dalam kadar yang rendah karena SO2 akan berasal dari hasil pembakaran batu bara atau minyak bumi yang biasanya dilakukan oleh pabrik. Secara alami O3 terdapat pada ketinggian 30 Km di atas permukaan bumi atau pada lapisan stratosfer yang terbentuk melalui pemecahan molekul O2 oleh cahaya matahari pada panjang gelombang 242 nm. Di lapisan troposfer O3 merupakan pencemar sekunder yang terbentuk dari reaksi fotokimia antara NO dan hidrokarbon-hidrokarbon reaktif dengan bantuan sinar matahari. Kadar O3 yang terukur rendah kemungkinan besar dikarenakan waktu sampling yang masih pagi sehingga pembentukan O3 di udara masih rendah. Kondisi meteorologi wilayah sampling diketahui bahwa suhu rata-rata adalah 28,84oC, tekanan udara rata-rata 825,11 mmHg dan kelembaban 95,84 %. Kondisi metereologi ini akan ikut mempengaruhi keberadaan pencemar di wilayah sampling. Salah satunya adalah kelembaban, semakin yang tinggi kelembaban semakin cepat terjadinya pencemaran di wilayah tersebut karena adanya pelarutan bahan pencemar oleh uqp air. sebagai contoh, di wilyh sampling kelembapannya cukup tinggi yakni 95,84 %. NO yang dikeluarkan oleh pembuangan kendaraan bermotor di udara akan berubah menjadi NO2, kelembaban yang tinggi akan mempercepat terbentuknya zat NO2 sehingga kadarnya akan lebih banyak. Wilayah sampling berada di pinggir wilayah Kota Madya Padang sedangkan sedangkan wkawasan industri yang berpotensi menjadi sumber pencemar udara tersebar di bgian barat dan selatan lokasi sampling dengan jarak yang jauh. Data arah angin menunjukkan dari tujuh kali pengukuran angin bertiup kerah barat dua kli, ke arah timur dan selatan masing-masing sekali dan tiga kali tidak terjadi pergerakan udara. Kecepatan angin yang terukur di wilayah samping juga kecil dari 1 m/dt. Kedua hal ini meyebabkan kemungkinan adanya pencemar yang berasal dari tempat lain ke wilayah sampling menjadi kecil sehingga pencemar yang ada di wilayah sampling hanya berasal dari sumber yang berada di wilayah sampling saat sampling di laksanakan sehingga kadar pencemar di wilayah sampling menjadi rendah