Analisis HPLC dan Aplikasinya BAB I PENDAHULUAN
Kromatografi cairan kolom klasik merupakan prosedur pemisahan yang sudah mapan dalam mana fase cair yang mobil mengalir lambat-lambat lewat kolom karena gravitasi. Umumnya metode itu dicirikan oleh efisiensi kolom yang rendah dan waktu pemisahan yang lama. Namun sejak kira-kira tahun 1969, perhatian dalam teknik kolom cairan hidup kembali dengan sangat menyolok karena dikembangkannya sistem tekanan tinggi oleh Kirchland dan 7
-2
Huber, yang bekerja pada tekanan sampai 2,07 x 10 Nm
(3000 p.s.i). Dalam metode ini
digunakan kolom berdiameter kecil (1-3 mm) dengan partikel pendukung berukuran sekitar 30 3
-1
m dan eluen dipompakan ke dalamnya dengan laju alir yang tinggi (sekitar 1-5 cm m ). Pemisahan dengan metode ini dilakukan jauh lebih cepat (sekitar 100 kali lebih cepat) daripada dengan kromatografi cairan yang biasa. Meskipun peralatan yang tersedia di pasar dewasa ini agak mahal. Kromatografi Cair Tekanan Tinggi, HPLC merupakan bentuk kromatografi kolom yang sering digunakan dalam biokimia dan analisis kimia untuk memisahkan, mengidentifikasi, mengukur dan memanjang. HPLC memanfaatkan kolom yang memegang chromatographic bahan kemasan (tahap tak berubah), sebuah pompa yang bergerak selular fase (s) melalui kolom, dan detektor yang menunjukkan ingatan waktu Molecules. Retensi waktu bervariasi tergantung pada interaksi antara keadilan tahap, yang Molecules yang dianalisis, dan larutan (s) yang digunakan. Kromatografi jenis ini menggunakan fase gerak berupa cairan yang dialirkan dengan tekanan sangat tinggi sedangkan fase diamnya dapat berbagai macam, tergantung mode kromatografi yang dipilih dalam proses pemisahan. Bila dibandingkan terhadap kromatografi gas-cair/ gas-liquid chromatography (GLC), maka HPLC lebih bermanfaat untuk isolasi zat tidak mudah menguap, demikian juga zat yang secara termal tidak stabil.
BAB II PEMBAHASAN ANALISIS HPLC
HPLC adalah alat yang sangat bermanfaat dalam analisis. Prinsip dasar dari HPLC adalah memisahkan setiap komponen dalam sample untuk selanjutnya diidentifikasi (kualitatif) dan d ihitung berapa konsentrasi dari masing-masing komponen tersebut (kuantitatif). Sebetulnya hanya ada dua hal utama yang menjadi krusial point dalam metode HPLC. Yang pertama adalah proses separasi/pemisahan dan yang kedua adalah proses identifikasi. Dua hal ini mejadi faktor yang sangat penting dalam keberhasilan proses analisa. Aplikasi analisis HPLC adalah untuk penentuan kualitatif dan penentuan kuant itatif. Penentuan Kualitatif
HPLC digunakan untuk analisa kualitatif didasarkan pada waktu retensi untuk identifikasi. Identifikasi dapat diandalkan apabila waktu retensi sampel dibandingkan dengan larutan standar. Penentuan Kuantitatif
Beberapa hal yang harus diperhatikan agar HPLC dapat dipergunakan untuk penentuan secara kuantitatif adalah:
o
o
o
Parameter percobaan sama antara standar dan sampel Penentuan berdasarkan waktu retensi sampel dan standar yang sama Penentuan kadar dilakukan berdasarkan hubungan (korelasi) dengan menggunakan larutan standar seri pada waktu retensi tertentu.
-
Berdasarkan area kromatogram
-
Berdasarkan tinggi puncak kromatogram
Hasil analisa HPLC diperoleh dalam bentuk signal kromatogram. Dalam kromatogram akan terdapat peak-peak yang menggambarkan banyaknya jenis komponen dalam sample. Sample yang mengandung banyak komponen didalamnya akan mempunyai kromatogram dengan banyak peak. Bahkan tak jarang antar peak saling bertumpuk (overlap). Hal ini akan menyulitkan dalam identifikasi dan perhitungan konsentrasi. Oleh karena itu biasanya untuk sample jenis ini dilakukan tahapan preparasi sample yang lebih rumit agar sample yang siap diinjeksikan ke HPLC sudah cukup bersih dari impuritis. Sample farmasi biasanya jauh lebih mudah karena sedikit mengandung komponen selain zat aktif. Sample ini umumnya hanya melalui proses pelarutan saja.
Contoh kromatogram dengan banyak peak
Kesulitan biasanya dihadapi ketika akan mengidentifikasi suatu kromatogram yang terdiri atas banyak peak. Untuk mengetahui peak mana yang merupakan milik analat (zat target analisa) kromatogram dibandingkan dengan kromatogram standard. Cara yang paling umum untuk mengidentifikasi adalah dengan melihat Retention time (RT). Peak yang mempunyai RT yang sama dengan standard umumnya akan langsung di vonis sebagai peak milik analat. Memang senyawa/zat yang sama akan mempunyai RT yang juga sama, dengan catatan sample dan
standard dijalankan dengan kondisi dan sistem HPLC yang sama. Namun bukan berarti RT yang sama pasti merupakan zat/senyawa yang sama. Disinilah para analis biasanya terkecoh. Jadi, melihat RT sebetulnya belumlah cukup untuk mengidentifikasi suatu zat. Hal lain yang perlu dilihat adalah spektrum 3D dari signal kromatogram. Zat yang sama akan mempunyai spektrum 3D yang juga sama. Sehingga jika spektrum 3D antara dua zat berbeda, maka kedua zat tersebut juga dipastikan adalah zat yang berlainan, meskipun memiliki RT yang sama. Beberapa parameter penting yang perlu diperhatikan di dalam analisis HPLC adalah : A. Kolom
Sebuah kolom sederhana memiliki diameter internal 4.6 mm (dan mungkin kurang dari nilai ini) dengan panjang 150 sampai 250 mm. Kolom yang biasa digunakan untuk analisa adalah bentuk kolom fase balik. Kolom diisi dengan partikel silika yang dimodifikasi menjadi non polar melalui pelekatan rantai-rantai hidrokarbon panjang pada permukaannya secara sederhana baik berupa atom karbon 8 atau 18. Sebagai contoh, pelarut polar digunakan berupa campuran air dan alkohol seperti metanol. Dalam kasus ini, akan terdapat atraksi yang kuat antara pelarut polar dan molekul polar dalam campuran yang melalui kolom. Atraksi yang terjadi tidak akan sekuat atraksi antara rantairantai hidrokarbon yang berlekatan pada silika (fase diam) dan molekul-molekul polar dalam larutan. Oleh karena itu, molekul-molekul polar dalam campuran akan menghabiskan waktunya untuk bergerak bersama dengan pelarut. Senyawa-senyawa non polar dalam campuran akan cenderung membentuk atraksi dengan gugus hidrokarbon karena adanya dispersi gaya van der Waals. Senyawa-senyawa ini juga akan kurang larut dalam pelarut karena membutuhkan pemutusan ikatan hydrogen sebagaimana halnya senyawa-senyawa tersebut berada dalam molekul-molekul air atau metanol misalnya. Oleh karenanya, senyawa-senyawa ini akan menghabiskan waktu dalam larutan dan akan bergerak lambat dalam kolom.Ini berarti bahwa molekul-molekul polar akan bergerak lebih cepat melalui kolom.
Ada kolom yang digunakan untuk beberapa jenis analisa, misalnya kolom C18 yang dapat digunakan untuk analisa carotenoid, protein, lovastatin, dan sebagainya. Namun ada juga kolom yang khusus dibuat untuk tujuan analisa tertentu, seperti kolom Zorbax carbohydrat (Agilent) yang khusus digunakan untuk analisa karbohidrat (mono-, di-, polysakarida). Keberhasilan proses separasi sangat dipengaruhi oleh pemilihan jenis ko lom dan juga fasa mobil. B. Komposisi Eluen
Komposisi eluen meliputi jenis dan perbandingan eluen yang digunakan. Ada 2 macam eluen, yakni pelarut nonpolar untuk fase normal, seperti heksan, dan pelarut polar untuk fase balik, seperti campuran air dan alkohol, yakni metanol. C. Volume Injeksi
Sampel yang akan dipisahkan dimasukkan ke dalam kolom secara otomatis atau manual melalui injeksi. Volume injeksi sangat tepat karena mempunyai sampel loop dengan variabel volume (misalnya 20 ± 500 L). Injeksi sampel dapat dilakukan melalui manual (menggunakan jarum suntik), step-flow injection, dan sampling value. D. Detektor
Detektor merupakan suatu bagian integral dari sebuah peralatan analitik kro matografi cair yang modern. HPLC mempunyai keunggulan dibanding kromatografi lain, yaitu mempunyai banyak pilihan detektor yang dapat digunakan. Secara garis besar , detektor dalam HPLC dapat dikelompokan :
o
Berdasarkan pengukuran diferensial suatu sifat yang dimiliki baik oleh molekul sampel maupun fase gerak (bulk pro perty detector).Detektor dapat dibedakan menjadi : Detektor Indeks Bias Detektor indeks bias merupakan detektor yang juga luas penggunaannya setelah
detektor ultraviolet. Dasarnya ialah pengukuran perbedaan indeks bias fase gerak murni
dengan indeks bias fase gerak yang berisi komponen sampel, sehingga dapat dianggap sebagai detektor yang universal pada HPLC. Detektor ini kurang sensitif dibanding dengan detektor ultraviolet dan sangat peka terhadap perubahan suhu. Detektor konduktivitas Detektor tetapan dielektrika
o
Berdasar pengukuran suatu sifat yang spesifik dari molekul sampel (disebut solute property detector).Jenis yang kedua ini dibedakan lagi menjadi :
1)
Tidak memerlukan adanya pemisahan fase gerak,
Detektor-detektor fotometer (uv-vis dan inframerah) Pada detektor ultraviolet/visibel, deteksi komponen sample didasarkan pada absorpsi sinar ultraviolet (untuk detektor ultraviolet) dan sinar tampak (untuk detektor visibel). Detektor ultraviolet merupakan detektor yang paling luas digunakan karena sensitivitas dan reprodusibelitasnya yang tinggi serta mudah operasinya. Detektor UV terutama digunakan untuk pendeteksian senyawa-senyawa organic. Detektor UV dilengkapi dengan pengatur panjang gelombang sehingga panjang gelombang UV yang digunakan dapat dipilih disesuaikan dengan jenis cuplikan yang diukur. Walaupun demikian, biasanya panjang gelombang UV yang digunakan adalah pada 254 nm karena kebanyakan senyawa organic menyerap sinar UV pada sekitar panjang gelombang tersebut. Detektor fotometer inframerah juga dapat digunakan pada HPLC. Dengan detektor ini dapat dibuat pola spektrum infra merah dari komponen sampel sehingga gugus-gugus fungsionalnya dapat diketahui. Detektor Polarografi dan radioaktif; Kedua detector ini dipengaruhi o leh variasi laju aliran..
E. Chart Speed
Diagram kecepatan dapat diketahui bila sampel diinjeksikan secara manual.
2.2
APLIKASI HPLC
Beberapa aplikasi HPLC dalam kehidupan : 1)
2)
HPLC dengan prinsip kromatografi banyak digunakan pada industri farmasi dan pestisida. Zat- zat dengan kepolaran berbeda yaitu antara sedikit polar sampai polar dapat dipisahkan dengan HPLC berdasarkan part isi cair-cair.
3)
Asam-asam nukleat dapat dipisahkan dengan kolom penukar ion yang dikombinasikan dengan kolom butiran berlapis zat berpori.
4)
5)
6)
Morfin, heroin dan semacamnya telah dapat dipisahkan dengan rezin Zipax-SAX. Dapat memisahkan vitamin-vitamin yang larut dalam air. Digunakan untuk menentukan berat molekul polimer dan masalah-masalah biokimia. -
2.2.1
Analisis Anion Nitrat (NO 3 )
Nitrat sebagai hasil proses alami atau industri akan bisa memasuki bahan alam atau bahan industri seperti air yang sangat dibutuhkan manusia atau untuk kebutuhan industri. Kandungan dalam jumlah tertentu akan sangat mempengaruhi kualitas air tersebut. Untuk itu diperlukan suatu metode analisis yang teruji untuk mengukur kandungan nitrtat tersebut. Dengan menggunakan HPLC sebagai instrumen analisis dan dengan pengembangan metode dapat diketahui validitas penggunaan HPLC untuk analisis anion nitrat. Dari beberapa model
pemutakhiran HPLC diketahui metode analisis HPLC dengan kolom IC Pak Anion serta eluen campuran Na-Borat glukonat : Butanol : Asetonitril (1:1:10) dan detektor Konduktivitas dapat menganalisis ion nitrat dalam air tangki reaktor, dengan batas deteksi 3,661 ppm dan sensitivitas 0,01 ppm serta uji recovery 110,41+ 1,59%.
Validasi HPLC Untuk Analisis Anion Nitrat (NO3-)
2.2.2
Analisis Vitamin C
Metode HPLC juga dapat digunakan sebagai dasar dari analisis vitamin C, yakni dalam menentukan susunan kimianya.Susunan kimia vitamin C ditemukan pada tahun 1933 oleh ilmuwan Inggris dan Swiss. Isolasi asam askorbat mula-mula ditemukan oleh King dari USA dan Szent-Gyorgy dari Hungaria. Vitamin ini mempunyai dua bentuk, yaitu bentuk oksidasi (bentuk dehydro) dan bentuk reduksi. Kedua bentuk ini mempunyai aktivitas biologi. Dalam makanan bentuk reduksi yang terbanyak. Banyak dehydro dapat terus teroksidasi menjadi diketogulonic acid yang inaktif.
2.2.3
Analisis Ekstrak Etanol Rimpang Tanaman Zingiberaceae
Rimpang tanaman Zingiberaceae pada umumnya mengandung metabolit sekunder golongan minyak atsiri sebagai zat kandungan yang menguap dan golongan lain berupa zat yang tidak menguap dan bahkan pada beberapa Curcuma spp. dan Kaempferia spp. terdapat komponen utama yang terkristalkan dari ekstrak total yang diuapkan pelarutnya (etanol, heksan) sebagai komponen utama. Banyaknya komponen kandungan dalam rimpang dengan berbagai polaritas menuntut penggunaan metoda analisis kromatografi instrumental dengan selektifitas (resolusi) yang tinggi, kromatografi cari kinerja tinggi (HPLC) untuk komponen yang termolabil, seperti dilakukan untuk stabilitas kandungan gingerol dari rimpang Jahe dan andrografolid dari Sambiloto. Untuk mendapatkan metoda HPLC dengan resolusi tinggi dibutuhkan cara eluasi gradient, dengan program menurun polaritasnya, yaitu mulai dari 10% metanol sampai metanol 100% dan pada umumnya ditambahkan asam fosfat sebagai cara untuk menekan ionisasi senyawa metabolit sekunder tanaman yang umumnya bersifat asam, seperti prinsip pasangan ion. Sampel analisis HPLC dibuat dari simplisia rimpang bentuk serbuk dimaserasi-perkolasi dengan pelarut bahan sampai diperoleh perkolat 10 kali berat bahan. Perkolat diuapkan dengan rotavapor sampai diperoleh kepekatan 1 ml ekstrak = 1 gram serbuk simplisia, diperoleh suatu ekstrak total. Sebelum ekstrak dianalisis HPLC, dilarutkan kembali dalam metanol ( 10X), kemudian
dilakukan filtrasi melalui " Sepak " (SPE C18 1 X 1 cm) untuk selanjutnya diinjeksikan sejumlah 20 ul ke HPLC. Kondisi HPLC dalam penelitian adalah sbb.: Eluasi dilakukan gradien pada kondisi awal Solvent-A
(As-fosfat
0,1
N
dalam
aquabidestillata)
:
Solvent
B
(Metanol pro HPLC) = 90 10; kemudian program gradien linear selamn 35 menit menuju 100% Metanol, dilanjutkan 15 menit Metanol 100%, dilanjutkan program pencucian kolom dengan 40% MetOH selama 10menit, dan diakhiri kembali kekondisi awal (10% MetOH) dalam waktu 5 menit. Kromatogram direkam selama total waktu 60 menit. Setiap kali injeksi bahan uji (ekstrak) memerlukan waktu 75 menit, kemudian dapat langsung diinjeksikan bahan uji berikutnya. Analisis HPLC dilakukan pada setiap sampel ekstrak dengan kondisi eluasi dan deteksi pada panjang gelombang 254 nm 365 nm. Analisis data : Sidik jari HPLC masing-masing ekstrak dianalisis dan dibedakan berdasarkan jumlah puncak komponen dan waktu retensinya untuk dicari karakterisasinya jika ada dalam campuran atau dalam produk. Dari
hasil
pengamatan
kromatogram,
dapat
disimpulkan
bawah
pada
ekstrak
C.domestica, C.xanthorrhiza dan C.zedoaria, jumlah puncak pada 254nm sama dengan jumlah puncak yang muncul pada 365nm juga dan jumlah puncak pada 365nm lebih besar dari pada jumlah puncak 254nm, sehingga untuk membuat sidik jari kromatogram HPLC terbaik digunakan deteksi pada 365nm. Pada ekstrak Alpinia galanga, Z.cassumunar, Z.zerumbet dan K.galanga, jumlah puncak pada 365nm sama dengan jumlah puncak yang muncul pada 254nm juga dan jumlah puncak pada 254nm lebih besar dari pada jumlah puncak 365nm, sehingga untuk membuat sidik jari kromatogram HPLC terbaik digunakan deteksi pada 254nm. C heyneana, C aeroginosa, Z offinalis, K pandurata, K angustifolia dan K rotunda jumlah puncak yang muncul sama pada 254nm dan 365nm lebih kecil dari jumlah puncak pada 254nm dan pada 365nm, sehirigga untuk pembuatan sidik jari kromatogram HPLC harus digunakan kombinasi deteksi pada 254nm clan 365nm.
2.2.4
Pengukuran Tingkat Kematangan Buah Manggis
Mutu buah-buahan segar saat ini umumnva masih dievalusi secara manual yang menggunakan tanda-tanda visual seperti warna kulit. Hasil evaluasi visual yang hanya menilai
sifat fisik bagian luar ini tidak selalu mencerminkan tingkat kematangan dan kerusakan bagian dalam buah. Bila ingin menentukan mutu bagian dalam buah harus digunakan cara kimia basah (HPLC) yang bersifat merusak. Dalam menanggulangi masalah ini perlu dilakukan suatu penelitian mengenai teknologi tertentu yang dapat dimanfaatkan untuk menentukan mutu bagian dalam buah-buahan secara tidak merusak. Hasil penelitian tugas akhir yang telah dilakukan menunjukkan bahwa metode ultrasonik dapat dipakai untuk menentukan tingkat kematangan buah manggis secara tidak merusak. Berdasarkan basil kalibrasi 80 buah manggis, kecepatan gelombang ultrasonik yang merambat melalui buah manggis untuk tiap tingkat kematangan mempunvai nilai yang berbeda-beda. Buah manggis yang masih mentah mempunyai kecepatan gelombang ultrasonik rata-rata 337.4 m/s, untuk buah setengah matang 369.1 m/s, buah matang 397.4 mis, serta untuk buah Iewat matang mempunyai nilai kecepatan rata-rata 449.6 mis. Nilai kecepatan rata-rata gelombang ultrasonik yang merambat pada tiap tingkat kematangan buah digunakan untuk membuat suatu persamaan empiris. Persamaan ini menghubungkan tingkat kematangan terhadap kecepatan gelombang ultrasonik untuk memperkirakan tingkat kematangan berdasarkan ultrasonik. diperoleh Tk = 0.0268 V 7.9258. Persamaan empiris yang diperoleh diuji dengan pengukuran kecepatan pada berbagai kondisi buah dengan warna visual yang beraneka ragam. Berdasarkan basil uji coba 100 buah manggis diperoleh perbedaan perkiraan kematangan antara ultrasonik dan warna kulit. Perbedaan tersebut mencapai 21%, hal ini menunjukkan bahwa warna kulit belum tentu mencerminkan tingkat kematangan dan kerusakan bagian dalam buah.
2.2.5
Pendugaan Kandungan Senyawa Bioaktif Atau Senyawa Penciri Beberapa Tanaman Obat
Secara kualitatif dan kuantitatif suatu senyawa aktif dapat diketahui antara lain melalui metode HPLC (High Performance Liquid Chromatography) dan FTIR (Fourier Trasfrorm Infrared). Penentuan kandungan senyawa aktif atau senyawa penciri dilakukan melalui proses yang panjang meliputi penghancuran bahan, pelarutan, dan pengukuran dengan HPLC dan FTIR. Proses ini memerlukan waktu dan biaya yang relatif mahal. Untuk itu sangat diperlukan metode
yang handal tetapi relatif mudah untuk dioperasikan. Alternatif cara penentuan lain yang menyatakan hubungan antara kandungan senyawa aktif atau penciri hasil pengukuran HPLC dengan data hasil pengukuran FTIR (absorban). Ketersediaan model ini akan menghemat waktu dan biaya. Pada tahun pertama dilakukan penentuan metode ekstraksi terbaik untuk senyawa aktif Gingerol dan Kurkumin yang berasal dari hasil pengamatan contoh petani jahe dan temulawak daerah Kulonproggo dan Karanganyar. Pada tahun pertama penyusunan model kalibrasi menggunakan dua sumber yaitu data simulasi dan data pengamatan petani jahe dan temulawak daerah Kulonprogo dan Karanganyar. Pendekatan terbaik untuk kalibrasi yang diperoleh pada tahun pertama digunakan untuk penyusunan model kalibrasi data persentase transmitan Gingerol dan Kurkumin tanaman hasil percobaan pada tahun kedua. Model kalibrasi yang diperoleh pada tahun kedua merupakan model terbaik berdasarkan data simulasi, data hasil pengamatan (Karanganyar dan Kulonprogo) serta data hasil percobaan. Pada tahun ketiga dilakukan validasi model kalibrasi yang diperoleh apda tahun sebelumnya dengan cara menerapkannya pada data konsentrasi dan persentase transmitan Gingerol dan Kurkumin yang berasal dari hasil pengamatan jahe dan temulawak yang diambil dari contoh Bogor, Cianjur, Kuningan, Majalengka dan Sukabumi.
BAB III KESIMPULAN
Kromatografi Cair Tekanan Tinggi, HPLC merupakan bentuk kromatografi kolom yang sering digunakan dalam biokimia dan analisis kimia untuk memisahkan, mengidentifikasi, mengukur dan memanjang. Ada dua tahap dalam analisis dengan menggunakan HPLC yaitu proses separasi/pemisahan dan identifikasi. Aplikasi analisis HPLC adalah untuk penentuan kuantitatif dan penentuan kualitatif. Beberapa parameter penting yang perlu diperhatikan di dalam analisis HPLC adalah jenis kolom, komposisi eluen (jenis dan perbandingan), volume injeksi (volume sampel loop), detektor, dan chart speed (bila manual). HPLC memberikan peranan yang besar dalam kehidupan, antara lain: banyak digunakan pada industri farmasi dan pestisida ; zat- zat dengan kepolaran berbeda yaitu antara sedikit polar sampai polar dapat dipisahkan dengan HPLC berdasarkan partisi cair-cair ; asam-asam nukleat dapat dipisahkan dengan kolom penukar ion yang dikombinasikan dengan kolom butiran berlapis zat berpori; morfin, heroin dan semacamnya telah dapat dipisahkan dengan rezin Zipax-SAX ; dapat memisahkan vitamin-vitamin yang larut dalam air ; digunakan untuk menentukan berat molekul polimer dan masalah-masalah biokimia. -
Aplikasi analisis dari HPLC dalam kehidupan antara lain : analisis anion nitrat (NO3 ), analisis vitamin C, analisis ekstrak etanol rimpang tanaman Zingiberaceae, pengukuran tingkat kematangan buah manggis, dan pendugaan kandungan senyawa bioaktif atau senyawa penciri beberapa tanaman obat.