Equilibrio de fases en sistemas s istemas multicomponentes Dr. Abel Moreno Cárcamo Instituto de Química, UNAM
[email protected] /
[email protected]
DIAGRAMAS DE FASE DE SISTEMAS DE DOS COMPONENTE COMPONENTESS Un sistema de dos componentes se le denomina sistema binario, si tenemos dos líquidos: B y C que forman una disolución ideal. Se mantiene la temperatura fija a valor T y por encima de los puntos de congelación de B y C. La presión P del sistema frente a XB formando un diagrama de fases, pero debe debemo moss ente enten nder der que que XB es igual a: nB nBl + nBv XB = ------------------------ = ------------------------------------------------------------nTOTAL nBl + n Bv + nCl + nCv Donde: nBl y nBv son el número de moles de B en la l a fase liquida (l) y en la fase vapor (v) respectivamente.
DIAGRAMAS DE FASE DE SISTEMAS DE DOS COMPONENTE COMPONENTESS Un sistema de dos componentes se le denomina sistema binario, si tenemos dos líquidos: B y C que forman una disolución ideal. Se mantiene la temperatura fija a valor T y por encima de los puntos de congelación de B y C. La presión P del sistema frente a XB formando un diagrama de fases, pero debe debemo moss ente enten nder der que que XB es igual a: nB nBl + nBv XB = ------------------------ = ------------------------------------------------------------nTOTAL nBl + n Bv + nCl + nCv Donde: nBl y nBv son el número de moles de B en la l a fase liquida (l) y en la fase vapor (v) respectivamente.
P
A
(solo líquido)
D
(Aparece el primer vapor)
Sistema F
Baño a T =constante
0
(Termina (Termina de vaporizarse el líquido)
xB
1
(b)
(a)
P = xBl PB* Esta relaciona las fracciones molares de la fase vapor con la composición del líquido a través de: xBl PB* xBv = xBlPB* / P y xCv = ------xCl PC*
La Ley de Raoult, P B ≅
xB
v
Donde: P B* y PC* son las presiones de vapor de los líquidos B y C puros a la temperatura T, la presión P del sistema es igual a la suma de las presiones parciales P B + PC donde x Bl = nBl /(nBl + nCl)
Equilibrio Líquido-Vapor para sistemas dos componentes
Disolución ideal a temperatura constante: sean dos líquidos B y C que forman una solución ideal. Se mantiene la temperatura fija a valor T por encima de los puntos de congelación de B y C. Vamos entonces a representar la presión P del sistema frente a X B, la fracción molar total de B en el sistema: nB, total nBl + nBv xB = -------------------------- = ----------------------------------------------… (1) ntotal nBl + nBv + nCl + nCv Donde: nBl y nBv son el número de moles de B en la fase líquida y vapor, respectivamente. Nota: Para un sistema cerrado, x B es constante, aunque n Bl y nBv pueden variar.
Entonces obtenemos: xBv xBl PB* -------- = ---------- ---------- … (2) xCv xCl PC* P = PC* + (PB* - PC*) xBl
… (3)
disolución ideal
disolución ideal (para D D D ’
Líquido (l)
P
PB*
D
’’
P frente a x Bl
D
D
’
L+v pC*
F
’’
F P frente a x Bv
0
F
’
Vapor (v)
xB
xB
’
xB
’’
1
)
’’
Sin embargo, la curva F F F es una representación de la presión de vapor total frente a xBv, para ello debemos transformar x Bl en un función de x Bv empleando la Ley de Raoult. ’
’’
Para ello PB = xBv P = xBl PB* para poder escribir x Bl = xBv P / PB* sustituyendo en (3) tenemos: P = PC* + (PB* - PC*) xBv P / PB* … (4) Despejando P de ésta ecuación tenemos: PB* PC* P = ---------------------------… (5) xBv (PC* - PB*) + PB*
disolución ideal
Esta es la ecuación que buscamos y corresponde a P frente a x Bv y corresponde a la curva F F F ’
’’
Diagrama de fases líquido-vapor de presión frente a la composición (para una disolución ideal a T = constante)
P A
PB*
Líquido (l) D
PD H PE PF
J
G E F
l-v
PC* Vapor (v)
I
Una línea a lo largo de la cual permanece constante la composición total, la línea ADEF, por ejemplo se denomina ISOPLETA. La línea horizontal HEI se denomina línea de conjunción o de unión. Una línea de conjunción en un diagrama de fases es una línea cuyos extremos corresponden a las composiciones de dos fases en equilibrio entre ellas. Los extremos de una línea de conjunción se encuentran en los límites de la región bifásica. Un punto en ésta zona de dos fases de un diagrama de fases da la composición global del sistema y las composiciones de las dos fases en equilibrio vienen dadas por los puntos situados en los extremos de la línea de conjunción a través de ese punto. Nota importante:
En la región de dos fases de un sistema con dos componentes, el número de grados de libertad, f = C ind – p + 2 = 2 - 2 + 2 = 2. En el diagrama de fases mostrado, T se mantiene constante, y esto reduce f a 1 en la región bifásica de la misma. Por lo tanto una vez que se fija P, f =0 en esta región de dos fases. Para un P fija, tanto x Bv como xBl quedan fijados. Por ejemplo, a la presión P E de la figura mostrada, xBv tiene el valor fijo x B,2 y xBl tiene el valor de x B,3. La fracción xB global depende de las cantidades relativas de las fases de líquido y vapor que están presentes en el equilibrio.
La fracción molar global de B es: xB = nB /(nl + nv)
… (6)
Por lo que: nB = xBnl + xBnv
… (7)
Además: nB = nBl + nBv = xBlnl + xBvnv
… (8)
Igualando estas expresiones para n B se tiene: xBnl + xBnv = xBl nl + xBv nv
… (9)
nl (xB – xBl) = nv (xBv – xB)
… (10)
Finalmente: nl EH = nv EI
… (11)
Donde EH y EI son las longitudes de los segmentos que van desde E hasta las curvas de líquido y del vapor de la figura anterior; n l y nv son el número total de moles en las fases líquido y vapor respectivamente. La ecuación (11) se le conoce como la regla de la palanca .
La de deducción de la regla de la palanca se aplica igualmente a cualquier sistema bifásico de dos componentes, no solo al equilibrio líquido-vapor. Ahora bien si tenemos α y β que son las fases presentes, nα y nβ son los números totales de los moles en las fases α y β, respectivamente, y la lα y lβ
son las longitudes de los segmentos que pertenecen a un punto contenido en la zona de dos fases del diagrama de fases y llegan hasta las curvas de las fases α y β, entonces por analogía tenemos:
nα lα = nβ lβ
…(12)
Con frecuencia se usa la fracción en peso global de B (en vez de xB) como abscisa del diagrama de fases. En este caso las masas sustituyen a los números de moles en la deducción anterior, y la regla de la palanca pasa a ser: mαlα =mβlβ
… (13)
Donde: mα y mβ son las masas de las fases α y β , respectivamente.
Problema en equipo Composición de las fases en una zona bifásica. Supongamos que el sistema bifásico contiene 10 moles de B y 6.66 moles de C y están a presión PE. ¿Cúantas fases están presentes en el sistema? Calcule el número de moles de B presentes en cada fase. Tome en cuenta que la longitud de xB en la figura es de 5.98 cm RESPUESTA: 10 moles Si XB = ------------------------------------ = 0.600 (10.0 moles + 6.66 moles) Sabemos que: nl (xB – xBl) = nv (xBv – xB) EH = 0.600 – 0.467 = 0.133 y EI = 0.706 – 0.600 = 0.106
(Del GRAFICO)
La Regla de la Palanca nos indica: nl EH = nv EI nl (0.133) = (16.66 moles – nl) (0.106) Por lo tanto: nl = 7.39 mol nBl = xBl nl = (0.467) (7.39 mol)= 3.45 mol si nB = nBl + nBv nBv = nB – nBl = 10 mol -3.45 mol = 6.55 mol
Temas para estudiar:
a.Disolución ideal a presión constante. b.Disoluciones no-ideales 2. Equilibrio líquido-líquido
a.Coeficientes de reparto 3. Equilibrio sólido-líquido en sistemas de dos componentes:
a.Miscibilidad en fase líquida e inmiscibilidad de fase sólida b.Disoluciones sólidas c.Miscibilidad en fase líquida y en fase sólida d.Miscibilidad en fase sólida y miscibilidad parcial en fase sólida e.Formación de compuestos. Miscibilidad en fase líquida e inmiscibilidad en fase sólida. f.Formación de compuestos con fusión incongruente. Miscibilidad en fase líquida e inmiscibilidad en fase sólida. g.Métodos experimentales 4. Estructura de los diagramas de fase 5. Solubilidad 6. Cálculo de los diagramas de fase en computadora 7. Sistemas de tres componentes.
Disolución ideal a presión constante (Equilibrio líquido-vapor) Representemos gráficamente T versus x B, la fracción molar global de uno de los componentes. Donde T C* y TB* son los puntos de ebullición normal de los líquidos C y B puros, suponiendo que la presión es constante e igual a 1 atm.
¿Cómo se han dibujado estas dos curvas? Partimos de PB* (T) y PC* (T) , las presiones de vapor de los líquidos B y C puros que se conocen en función de la temperatura. Sea P # el valor constante de la presión, entonces tenemos que: P# = PB + PC siendo PB y PC las presiones parciales de B y C en el vapor. La Ley de Raoult establece que: P # = xBPB* (T) + (1 – xBl)PC* (T) Por lo tanto tenemos: P# - PC* (T) xBl = ------------------------------PB* (T) – PC* (T)
disolución ideal
… (1)
Como PB* y PC* son funciones conocidas de T, podemos utilizar (1) para calcular x Bl a cualquier temperatura dada y de este modo dibujar la curva inferior (la del líquido). Para la curva del vapor, utilizamos xBv = PB / P# = xBl PB* / P#, por lo tanto tenemos: PB* (T) xBv = -----------P#
P# - PC* (T) -------------------------- disolución ideal PB* (T) - PC* (T)
… (2)
Disoluciones no-ideales en diagramas de fase líquido-vapor Estos diagramas se obtienen midiendo la presión y la composición de vapor en equilibrio con un líquido de composición conocida. Supongamos que existe un máximo en la curva de P frente a xB ¿Qué forma tendría la curva inferior?
La respuesta es que no debería ser como la figura anterior, la figura correcta de este tipo de diagramas de fase debería ser como las siguientes figuras la segunda nos muestra como debe ser T frente a xB:
El azeótropo (o mezcla azeotrópica), es una mezcla líquida de dos o más componentes que posee un único punto de ebullición constante y fijo, y que al pasar al estado vapor (gaseoso) se comporta como un compuesto puro, es decir como si fuera un solo componente. Ej. El azeótropo entre H2O y Etanol (96%) y con punto de ebullición de 78.2 C que está por debajo de los puntos de ebullición normales °
Equilibrio líquido-líquido en sistemas dos componentes Se dice que dos líquidos son totalmente miscibles cuando al mezclarlos se forma una sola fase (ej agua/etanol). Cuando se mezclan dos líquidos y la miscibilidad entre ambos es parcial, se dice entonces que son parcialmente miscibles (ej. Agua /l-Butanol). En este caso la curva del diagrama de fases de dos componentes (B y C) líquido-líquido de T frente x B :
TC se le conoce como la temperatura crítica de la disolución. Cuando aumenta la temperatura, la zona de inmiscibilidad líquído-líquido disminuye, hasta que se anula al alcanzar la T C. Por encima de T C , los líquidos son completamente miscibles.
Las regiones bifásicas se denominan lagunas de miscib ilidad . En el caso de equilibrios gas-gas, existen varios casos en los que se presentan estas lagunas de miscibilidad (ej. CO 2-H2O, NH3-CH4, He-Xe). Estas lagunas aparecen a temperaturas superiores a la temperatura crítica de ambos componentes.
La Figura 12.18 muestra el diagrama de fases líquido-líquido para el agua (A) y el 1-Butanol (B) a a presión de vapor del sistema. Calcule el número de moles de cada sustancia en cada fase si 4.0 moles de A y 1.0 moles de B se mezclan a 30 C. Puede usar la regla (ley) de la palanca. Solución :
La fracción global xB es (1.0 moles) / (5.0 moles) = 0.20. A 30 C, el punto xB = 0.20 pertenece a la región bifásica. Si se dibuja una línea de conjunción a 30 C a través de la zona bifásica, se obtiene la línea RS. Sean α y β las fases presentes. El punto R se encuentra en x Bα = 0.02. El punto S se encuentra en x Bβ = 0.48. Se tiene entonces: °
°
nB = nBα + nBβ = xBαnα + xBβnβ 1.0 mol = 0.02 n α + 0.48 (5.0 – nα) nα = 3.04 moles, nβ = 5.0 moles – 3.04 moles = 1.96 moles nα B= xBα nα = 0.02 (3.04 moles) = 0.06 moles nβ B= 0.48 ( 1.96 moles) = 0.94 moles nα A = nα – nBα = 3.04 moles – 0.06 moles = 2.98 moles nβ A= n A – n Aα = (4.0 – 2.98) moles = 1.02 moles. La regla de la palanca
SOLUCION: A = agua, 4 moles B = 1-butanol, 1 mol
4.0 moles X A = ---------------- = 0.80 5.0 moles R = XB α = 0.02 S = XB β = 0.48
α = una fase β = dos fases
1 mol X B = ------------------ = 0.20 5 moles
;
nB = nBl + nBv nB = XBα nα + XBβ nβ
La expresión de la regla de la palanca es: RN nα = NS nβ Los valores del diagrama son: RN = 0.20 – 0.02 = 0.18 NS = 0.48 -0.20 = 0.28 La Ley de la palanca nos daría: 0.18 nα = 0.28 nβ nα/nβ = NS/ RN = 0.28/0.18 = 1.56 nT = 5 moles = nα + nβ = 1.56 nβ + nβ = 2.56 nβ nβ = 1.95 nα = 5 moles – nβ = 3.05 nBα = XBα nα = 0.02 (3.05) = 0.06
nBβ = 0.48 (1.95) = 0.94
Coeficientes de reparto Supongamos que los disolventes A y B son parcialmente miscibles a la temperatura T y cuando se mezclan a esa T, se forman las fases α (una disolución diluida de B en disolvente A) y β (una disolución diluida de A en disolvente B). Si añadimos un soluto i al sistema, éste se distribuirá entre las fases α y β para que se satisfaga μiα = μiβ. Usando la escala de
concentraciones: μ
α
°
c,i
+ RT ln (γc,iα ciα/ c
ln (γc,iα ciα / γc,i β ciβ = - (μc,i
°
α –
°
,β
) =μ
°
μc,i
,β
°
ciα γc,iβ K AB,i = ------ = ----------- exp [ - (μc,i ciβ γc,iα
c,i
+ RT ln (γc,iβ ciβ / c
)
°
) /RT α –
°
μc,i
,β
°
) /RT) ]
K AB,i = ciα / ciβ es el coeficiente de reparto (o coeficiente de distribución) del soluto i para los disolventes A y B Nota: K AB,i no es exactamente igual a la razón de solubilidades de i en A y B, puesto que las fases α y β no son A puro y B puro. Esta ecuación es la relación ΔG RT ln K para la reacción i ( β ) i ( α ) °
Equilibrio sólido-líquido en sistemas de dos componentes Miscibilidad en fase líquida e inmiscibilidad en fase sólida: sean C y B
dos sustancias miscibles en todas las proporciones en la fase líquida y completamente inmiscibles en la fase sólida.
Donde TB* y TC* son los puntos (temperaturas) de congelación de B puro y C puro. E es el punto eutéctico que es el punto de temperatura más baja a la cual puede fundir una mezcla de B y C con una composición fija El áfic ta di de fa de sist téctic si pl (Pb-Sb be ftal
Por lo tanto la ecuación para la curva DE es: R ln xB ≈ ΔfusHm,B [ (1/TB*) – (1/T)] Donde para la curva AE se emplea la misma ecuación solo que introduciendo los siguientes cambios: R ln xC ≈ ΔfusHm,C [ (1/TC*) – (1/T)] Así la regla de la palanca para el segmento GHI quedaría: nCs HI = (nBl + nCl) HG Donde nCs es el número de moles de C sólido en el equilibrio con una disolución de nBl moles de B nCl moles de C. En el punto f, la regla de la palanca nCs = 0. A medida que T desciende a lo largo de FHK la distancia horizontal a la línea AFGE aumentam indicando un aumento de n Cs. Si T disminuye se alcanza el punto K que es de alguna manera la temperatura eutéctica. En este punto la disolución tiene una concentración xB (punto E) y tanto el sólido C y el sólido B se congelan. Esto es porque la disolución de composición eutéctica se enfría. ’’’
Disoluciones sólidas Ciertos pares de sustancias forman disoluciones sólidas. En una disolución sólida de B y C no existen cristales individuales de B o de C. Por el contrario, las moléculas, átomos o iones se mezclan unos con otros a nivel molecular, y la composición de la disolución se puede modificar de forma continua a lo largo de un cierto intervalo. Ejemplos: Acero, Cu-Ni, Na2CO3-K2CO3 y p-diclorobenceno-p-dibromobenceno. El ZnO suele tener una relación molar Zn/O ligeramente mayor que 1. La explicación es que es una disolución sólida intersticial de Zn en ZnO. Por lo tanto no viola la Ley de proporciones definidas.
Miscibilidad en fase líquida y en fase sólida: ejemplo el diagrama de fases
sólido-líquido del sistema Cu-Ni a 1 atmósfera.
Cu-Ni, Sb-Bi, Pd-Ni, KNO 3-NaNO3 y d-carvoxima-l-carvoxima son ejemplo de sustancias completamente miscibles en fase solida.
Miscibilidad en fase líquida y miscibilidad parcial en fase sólida
Introducción Son representaciones gráficas de las fases presentes en un sistema a varias temperaturas, presiones y composiciones. La información que se obtiene es: •Las fases presentes en el sistema a diferentes composiciones y
temperaturas bajo condiciones de enfriamiento lento (equilibrio). •La temperatura a la cual las diferentes fases comienzan a
fundirse. •La presencia de fenómenos de alotropía o polimorfismo en
estado sólido.
Diagramas de fase de una sola componente Una sustancia pura como el agua puede existir en las fases sólida, líquida y gaseosa, dependiendo de las condiciones de temperatura y presión.
Regla de las fases o de Gibss
Permite obtener los grados de libertad (F) para mantener el equilibrio en un sistema, en base al número de sus componentes (C) y fases presentes (P), teniendo en cuenta la existencia de dos variables termodinámicas independientes, usualmente presión y temperatura. La regla se expresa por la relación:
F+P=C+2
C=1 P=1 F = 2 (P, T)
C=1 P=2
Diagramas binarios La constitución de una aleación queda descrita por:
• La composición global de la aleación • El número de fases presentes • La composición de cada fase • La fracción, porcentaje o proporción en peso de cada fase
Diagrama de fases del sistema C-S. Formación de CS
Desarrollo de microestructura
Diagrama Eutéctico Solubilidad total en estado líquido y nula en sólido Eutéctico: punto invariante (F= 0) en el que un líquido (L) se transforma en otros dos sólidos diferentes (α y β).
L L+β L+α
Reacción eutéctica L
α+β
Diagrama con punto de equilibrio Peritéctico
Punto invariante (F = 0) en el que un líquido (L) y una fase sólida ( ) se transforman en otra sólida distinta ( ).
Reacción peritéctica:
L+
Diagramas con punto de equilibrio PERITECTOIDE
Peritectoide: punto invariante (F = 0) en el que dos sólidos ( α y β) se transforman en otro sólido diferente ( ).
Reacc ión p eritecto ide
α+β
Diagramas de equilibrio con EUTECTOIDE
Eutectoide: punto invariante (F= 0) en el que un sólido ( ) se transforma en otros dos sólidos diferentes (α y β). Reacción eutectoide
α
Aquí un calentamiento adicional posterior a la transición del punto H nos lleva en primer lugar a la región bifásica β y la disolución líquida y
finalmente a la región de una sola fase de disolución líquida. Una transición peritéctica (transición en el punto H) es aquella en la que el calentamiento transforma una fase sólida en una fase líquida mas una segunda fase sólida: s 1 liq + s2 Nota: en la transición eutéctica, el calentamiento sigue el esquema s 1 + s2 = líq.
FORMACIÓN DE COMPUESTOS: Miscibilidad en fase líquida e inmiscibilidad en fase sólida. El compuesto funde congruentemente. T
FORMACIÓN DE COMPUESTOS: Formación de compuestos con incongruente, miscibilidad en fase líquida e inmiscibilidad en fase sólida.
fusión
El punto P se denomina PUNTO PERITÉCTICO, Cuando se forman compuestos, existe la posibilidad de que aparezca más de un punto peritéctico.
Métodos Experimentales: Análisis Térmico
T es directamente proporcional a cantidad de calor que pierde el sistema, por lo que la pendiente dT/dt de una curva de enfriamiento es aproximadamente proporcional a la inversa de la capacidad cal ’orica del sistema: C = dq /dT
Solubilidad
Solubilidad…
Para la mezcla eutéctica NaCl-H 2O la temperatura eutéctica es de -21 para el sistema CaCl 6H O H O es de -50 C. °
°
Cy
Calculo de diagrama de fases por ordenador
Sistema ternario Para representación bidimensional, las concentraciones de los tres componentes a P y T dadas, se grafican sobre un triangulo equilátero:
• •
Cada vértice del triangulo representa el 100% del componente con que se designa. Las divisiones o líneas paralelas al lado B C , dan los porcentajes de A, que van desde 0%A (sobre BC ) hasta 100%A (vértice).
• Análogamente, las líneas que dividen los
lados BA y BC y son paralelas a AC nos dan los porcentajes de B , y las que dividen a CA y CB y paralelas a A B representan los porcentajes de C .
•
Para graficar un punto sobre el diagrama tal como D , localizamos su composiciones en 30% de A , 20% de B y por ende 50% de C , el cual queda definido
Sistema TiO2-FeO-Fe2O3 a altas temperaturas
Cerámicas optoelectrónicas PZTL
Moduladores, filtros de color, obturadores, dispositivos de almacenamiento
Materiales refractarios
En resumen…